Volume 14 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Song Jiahua, Yu Yifan, Deng Wenyi, et al. Kidney xenotransplantation: status quo and development trend of physiological research[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 898-904. doi: 10.3969/j.issn.1674-7445.2023148
Citation: Song Jiahua, Yu Yifan, Deng Wenyi, et al. Kidney xenotransplantation: status quo and development trend of physiological research[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 898-904. doi: 10.3969/j.issn.1674-7445.2023148

Kidney xenotransplantation: status quo and development trend of physiological research

doi: 10.3969/j.issn.1674-7445.2023148
More Information
  • Corresponding author: Wang Yi, Email: wayne0108@126.com
  • Received Date: 2023-07-29
  • Accepted Date: 2023-09-19
  • Available Online: 2023-09-27
  • Publish Date: 2023-11-09
  • Organ transplantation is the most effective treatment for all categories of end-stage organ diseases. To resolve the shortage of donors in organ transplantation, widespread attention has been diverted to xenotransplantation. At present, clinicians mainly highlight the problems related to xenotransplantation rejection and viral infection. The physiology of xenotransplantation has been rarely studied. Kidney performs endocrine function by producing erythropoietin (EPO), renin and activating vitamin D. Although these pathways are usually well preserved in allogeneic transplantation, species-specific differences, especially those between pigs and non-human primates, may still affect the physiological function of transplant organs. In this article, the changes of EPO, renin-angiotensin-aldosterone system (RAAS) and active vitamin D3 of pig and human after xenotransplantation were illustrated, aiming to provide reference for subclinical research of xenotransplantation.

     

  • loading
  • [1]
    MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. N Engl J Med, 2022, 386(20): 1889-1898. DOI: 10.1056/NEJMoa2120238.
    [2]
    PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4): 1037-1053. DOI: 10.1111/ajt.16930.
    [3]
    COOPER DKC, PIERSON RN 3 RD. Milestones on the path to clinical pig organ xenotransplantation[J]. Am J Transplant, 2023, 23(3): 326-335. DOI: 10.1016/j.ajt.2022.12.023.
    [4]
    HIRANO I, SUZUKI N. The neural crest as the first production site of the erythroid growth factor erythropoietin[J]. Front Cell Dev Biol, 2019, 7: 105. DOI: 10.3389/fcell.2019.00105.
    [5]
    TSIFTSOGLOU AS. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): implications in regenerative medicine[J]. Cells, 2021, 10(8): 2140. DOI: 10.3390/cells10082140.
    [6]
    WEN D, BOISSEL JP, TRACY TE, et al. Erythropoietin structure-function relationships: high degree of sequence homology among mammals[J]. Blood, 1993, 82(5): 1507-1516. DOI: 10.1182/blood.V82.5.1507.1507.
    [7]
    ELLIOTT S, SINCLAIR AM. The effect of erythropoietin on normal and neoplastic cells[J]. Biologics, 2012, 6: 163-189. DOI: 10.2147/BTT.S32281.
    [8]
    BRINES M, GRASSO G, FIORDALISO F, et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor[J]. Proc Natl Acad Sci U S A, 2004, 101(41): 14907-14912. DOI: 10.1073/pnas.0406491101.
    [9]
    RISØR LM, FENGER M, OLSEN NV, et al. Hepatic erythropoietin response in cirrhosis[J]. Scand J Clin Lab Invest, 2016, 76(3): 234-239. DOI: 10.3109/00365513.2015.1137351.
    [10]
    LÖNNBERG M, GARLE M, LÖNNBERG L, et al. Patients with anaemia can shift from kidney to liver production of erythropoietin as shown by glycoform analysis[J]. J Pharm Biomed Anal, 2013, 81/82: 187-192. DOI: 10.1016/j.jpba.2013.04.009.
    [11]
    BOSE S, VOLPATTI LR, THIONO D, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells[J]. Nat Biomed Eng, 2020, 4(8): 814-826. DOI: 10.1038/s41551-020-0538-5.
    [12]
    HANSEN-ESTRUCH C, COOPER DKC, JUDD E. Physiological aspects of pig kidney xenotransplantation and implications for management following transplant[J]. Xenotransplantation, 2022, 29(3): e12743. DOI: 10.1111/xen.12743.
    [13]
    CHOE HM, LUO ZB, KANG JD, et al. Pathological features in 'humanized' neonatal pig[J]. Anim Biotechnol, 2023, 34(2): 301-309. DOI: 10.1080/10495398.2021.1962896.
    [14]
    COOPER DKC, HARA H, IWASE H, et al. Clinical pig kidney xenotransplantation: how close are we?[J]. J Am Soc Nephrol, 2020, 31(1): 12-21. DOI: 10.1681/ASN.2019070651.
    [15]
    PAN SY, TSAI PZ, CHOU YH, et al. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis[J]. Kidney Int, 2021, 99(6): 1354-1368. DOI: 10.1016/j.kint.2021.01.017.
    [16]
    SCHOLZ H, BOIVIN FJ, SCHMIDT-OTT KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J]. Nat Rev Nephrol, 2021, 17(5): 335-349. DOI: 10.1038/s41581-021-00394-7.
    [17]
    HONDA T, HIRAKAWA Y, NANGAKU M. The role of oxidative stress and hypoxia in renal disease[J]. Kidney Res Clin Pract, 2019, 38(4): 414-426. DOI: 10.23876/j.krcp.19.063.
    [18]
    FAIVRE A, SCHOLZ CC, DE SEIGNEUX S. Hypoxia in chronic kidney disease: towards a paradigm shift?[J]. Nephrol Dial Transplant, 2021, 36(10): 1782-1790. DOI: 10.1093/ndt/gfaa091.
    [19]
    GUGLIELMO C, BIN S, CANTARELLI C, et al. Erythropoietin reduces auto- and alloantibodies by inhibiting T follicular helper cell differentiation[J]. J Am Soc Nephrol, 2021, 32(10): 2542-2560. DOI: 10.1681/ASN.2021010098.
    [20]
    HORWITZ JK, BIN S, FAIRCHILD RL, et al. Linking erythropoietin to Treg-dependent allograft survival through myeloid cells[J]. JCI Insight, 2022, 7(10): e158856. DOI: 10.1172/jci.insight.158856.
    [21]
    ESWARAPPA M, CANTARELLI C, CRAVEDI P. Erythropoietin in lupus: unanticipated immune modulating effects of a kidney hormone[J]. Front Immunol, 2021, 12: 639370. DOI: 10.3389/fimmu.2021.639370.
    [22]
    DONADEI C, ANGELETTI A, CANTARELLI C, et al. Erythropoietin inhibits SGK1-dependent Th17 induction and Th17-dependent kidney disease[J]. JCI Insight, 2019, 5(10): e127428. DOI: 10.1172/jci.insight.127428.
    [23]
    KNOCHELMANN HM, DWYER CJ, BAILEY SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity[J]. Cell Mol Immunol, 2018, 15(5): 458-469. DOI: 10.1038/s41423-018-0004-4.
    [24]
    ZHOU S, QIAO YM, LIU YG, et al. Bone marrow derived mesenchymal stem cells pretreated with erythropoietin accelerate the repair of acute kidney injury[J]. Cell Biosci, 2020, 10(1): 130. DOI: 10.1186/s13578-020-00492-2.
    [25]
    TSUJITA M, KOSUGI T, GOTO N, et al. The effect of maintaining high hemoglobin levels on long-term kidney function in kidney transplant recipients: a randomized controlled trial[J]. Nephrol Dial Transplant, 2019, 34(8): 1409-1416. DOI: 10.1093/ndt/gfy365.
    [26]
    SCHECHTER A, GAFTER-GVILI A, SHEPSHELOVICH D, et al. Post renal transplant anemia: severity, causes and their association with graft and patient survival[J]. BMC Nephrol, 2019, 20(1): 51. DOI: 10.1186/s12882-019-1244-y.
    [27]
    SILVA BDPC, LASMAR MF, NASCIMENTO E, et al. Impact of early blood transfusion after kidney transplantation on the clinical outcomes and allograft survival[J]. Transpl Immunol, 2023, 77: 101807. DOI: 10.1016/j.trim.2023.101807.
    [28]
    HANSEN-ESTRUCH C, BIKHET MH, JAVED M, et al. Renin-angiotensin-aldosterone system function in the pig-to-baboon kidney xenotransplantation model[J]. Am J Transplant, 2023, 23(3): 353-365. DOI: 10.1016/j.ajt.2022.11.022.
    [29]
    FIRL DJ, LASSITER G, HIROSE T, et al. Clinical and molecular correlation defines activity of physiological pathways in life-sustaining kidney xenotransplantation[J]. Nat Commun, 2023, 14(1): 3022. DOI: 10.1038/s41467-023-38465-x.
    [30]
    CHEN TK, KNICELY DH, GRAMS ME. Chronic kidney disease diagnosis and management: a review[J]. JAMA, 2019, 322(13): 1294-1304. DOI: 10.1001/jama.2019.14745.
    [31]
    BOYCE NW, HOLDSWORTH SR. Direct antiGBM antibody induced alterations in glomerular permselectivity[J]. Kidney Int, 1986, 30(5): 666-672. DOI: 10.1038/ki.1986.238.
    [32]
    IWASE H, YAMAMOTO T, COOPER DKC. Episodes of hypovolemia/dehydration in baboons with pig kidney transplants: a new syndrome of clinical importance?[J]. Xenotransplantation, 2019, 26(2): e12472. DOI: 10.1111/xen.12472.
    [33]
    HANSEN-ESTRUCH C, PORRETT PM, KUMAR V, et al. The science of xenotransplantation for nephrologists[J]. Curr Opin Nephrol Hypertens, 2022, 31(4): 387-393. DOI: 10.1097/MNH.0000000000000800.
    [34]
    HANSEN-ESTRUCH C, BIKHET MH, SHAIK IH, et al. Assessment of glomerular filtration and tubular secretion in baboons with life-supporting pig kidney grafts[J]. Xenotransplantation, 2023, 30(2): e12795. DOI: 10.1111/xen.12795.
    [35]
    程焕, 简桂花, 汪年松. 慢性肾脏病继发钙磷代谢紊乱发病机制研究[J]. 上海医药, 2019, 40(10): 7-9,24. DOI: 10.3969/j.issn.1006-1533.2019.10.003.

    CHENG H, JIAN GH, WANG NS. Research on the pathogenesis of calcium-phosphorus metabolism disorder associated with chronic kidney disease[J]. Shanghai Med Pharm J, 2019, 40(10): 7-9,24. DOI: 10.3969/j.issn.1006-1533.2019.10.003.
    [36]
    LATIC N, ERBEN RG. FGF23 and vitamin D metabolism[J]. JBMR Plus, 2021, 5(12): e10558. DOI: 10.1002/jbm4.10558.
    [37]
    LATIC N, ERBEN RG. Interaction of vitamin D with peptide hormones with emphasis on parathyroid hormone, FGF23, and the renin-angiotensin-aldosterone system[J]. Nutrients, 2022, 14(23): 5186. DOI: 10.3390/nu14235186.
    [38]
    IWASE H, HARA H, EZZELARAB M, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts[J]. Xenotransplantation, 2017, 24(2):e12293. DOI: 10.1111/xen.12293.
    [39]
    李宁. 肾移植术后矿物质和骨异常[J]. 器官移植, 2019, 10(5): 559-569. DOI: 10.3969/J.ISSN.1674-7445.2019.05.016.

    LI N. Mineral and bone abnormalities after renal transplantation[J]. Organ Transplant, 2019, 10(5): 559-569. DOI: 10.3969/J.ISSN.1674-7445.2019.05.016.
    [40]
    ADAMS AB, LOVASIK BP, FABER DA, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation[J]. Ann Surg, 2021, 274(3): 473-480. DOI: 10.1097/SLA.0000000000004996.
    [41]
    TATAPUDI VS, GRIESEMER AD. Physiologic considerations of pig-to-human kidney xenotransplantation[J]. Curr Opin Nephrol Hypertens, 2023, 32(2): 193-198. DOI: 10.1097/MNH.0000000000000858.
    [42]
    GANCHIKU Y, RIELLA LV. Pig-to-human kidney transplantation using brain-dead donors as recipients: one giant leap, or only one small step for transplantkind?[J]. Xenotransplantation, 2022, 29(3): e12748. DOI: 10.1111/xen.12748.
    [43]
    JAGDALE A, COOPER DKC, IWASE H, et al. Chronic dialysis in patients with end-stage renal disease: relevance to kidney xenotransplantation[J]. Xenotransplantation, 2019, 26(2): e12471. DOI: 10.1111/xen.12471.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (382) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return