Volume 14 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Zheng Long, Cai Ming. Macrophages and kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 643-648. doi: 10.3969/j.issn.1674-7445.2023139
Citation: Zheng Long, Cai Ming. Macrophages and kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 643-648. doi: 10.3969/j.issn.1674-7445.2023139

Macrophages and kidney transplantation

doi: 10.3969/j.issn.1674-7445.2023139
More Information
  • Author Bio:

    111

  • Corresponding author: Cai Ming, Email: caiming@zju.edu.cn
  • Received Date: 2023-07-17
  • Accepted Date: 2023-07-21
  • Available Online: 2023-09-08
  • Publish Date: 2023-09-15
  • Kidney transplantation is the optimal treatment for patients with end-stage renal disease, whereas long-term survival of renal allografts remains a challenging issue. Renal ischemia-reperfusion injury (IRI) and rejection of renal allografts are considered as important influencing factors of long-term survival of renal allografts, which are regulated by innate and adaptive immune cells. Macrophages are one type of innate immune cells that could assist initiating adaptive immunity and are divided into M1, M2 and regulatory macrophages. Previous studies have revealed that M1 macrophages may aggravate renal IRI and acute T cell-mediated rejection (TCMR). However, M2 macrophages may mitigate renal IRI and acute TCMR, whereas it is positively correlated with antibody-mediated rejection (AMR). Regulatory macrophages are a special subgroup of macrophages, which may induce immune tolerance in organ transplantation and have promising clinical application prospects and basic scientific research value. In this article, the relationship among macrophage typing, macrophages and renal IRI, rejection of renal allografts, regulatory macrophages and immune tolerance was reviewed, and the potential mechanism was analyzed, aiming to induce changes in macrophage subtypes or eliminate specific subtypes of macrophages, thereby improving clinical prognosis of the recipients and long-term survival of renal allografts.

     

  • loading
  • [1]
    CHENG Q, ZHANG J, ZHENG T, et al. Editorial: innate immunity and renal transplantation[J]. Front Immunol, 2023, 14: 1206683. DOI: 10.3389/fimmu.2023.1206683.
    [2]
    SHI B, YING T, CHADBAN SJ. Survival after kidney transplantation compared with ongoing dialysis for people over 70 years of age: a matched-pair analysis[J]. Am J Transplant, 2023, DOI: 10.1016/j.ajt.2023.07.006 [Epub ahead of print
    [3]
    POGGIO ED, AUGUSTINE JJ, ARRIGAIN S, et al. Long-term kidney transplant graft survival-making progress when most needed[J]. Am J Transplant, 2021, 21(8): 2824-2832. DOI: 10.1111/ajt.16463.
    [4]
    HART A, SMITH JM, SKEANS MA, et al. OPTN/SRTR 2017 annual data report: kidney[J]. Am J Transplant, 2019, 19 (Suppl 2): 119-123. DOI: 10.1111/ajt.15274.
    [5]
    魏健超, 何凯鸣, 孙启全. 2022年中国肾移植研究年度盘点[J]. 器官移植, 2023, 14(3): 336-342. DOI: 10.3969/j.issn.1674-7445.2023.03.003.

    WEI JC, HE KM, SUN QQ. Research highlights on kidney transplantation in 2022 from China[J]. Organ Transplant, 2023, 14(3): 336-342. DOI: 10.3969/j.issn.1674-7445.2023.03.003.
    [6]
    JAIN A, PASARE C. Innate control of adaptive immunity: beyond the three-signal paradigm[J]. J Immunol, 2017, 198(10): 3791-3800. DOI: 10.4049/jimmunol.1602000.
    [7]
    任滌非, 廖涛, 苗芸. 巨噬细胞在移植后慢性排斥反应中的作用研究进展[J]. 器官移植, 2023, 14(3): 358-363. DOI: 10.3969/j.issn.1674-7445.2023.03.006.

    REN DF, LIAO T, MIAO Y. Research progress on the role of macrophages in post-transplantation chronic rejection[J]. Organ Transplant, 2023, 14(3): 358-363. DOI: 10.3969/j.issn.1674-7445.2023.03.006.
    [8]
    ORDIKHANI F, POTHULA V, SANCHEZ-TARJUELO R, et al. Macrophages in organ transplantation[J]. Front Immunol, 2020, 11: 582939. DOI: 10.3389/fimmu.2020.582939.
    [9]
    YANG S, ZHAO M, JIA S. Macrophage: key player in the pathogenesis of autoimmune diseases[J]. Front Immunol, 2023, 14: 1080310. DOI: 10.3389/fimmu.2023.1080310.
    [10]
    KOLLINIATI O, IERONYMAKI E, VERGADI E, et al. Metabolic regulation of macrophage activation[J]. J Innate Immun, 2022, 14(1): 51-68. DOI: 10.1159/000516780.
    [11]
    YADAV S, PRIYA A, BORADE DR, et al. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance[J]. Immunol Res, 2023, 71(2): 130-152. DOI: 10.1007/s12026-022-09330-8.
    [12]
    CHEN S, SAEED AFUH, LIU Q, et al. Macrophages in immunoregulation and therapeutics[J]. Signal Transduct Target Ther, 2023, 8(1): 207. DOI: 10.1038/s41392-023-01452-1.
    [13]
    杨雅量, 葛星月, 李文武, 等. 巨噬细胞极化调控机制及在创面愈合中的作用和作用机制研究进展[J]. 山东医药, 2022, 62(30): 103-107.

    YANG YL, GE XY, LI WW, et al. Research progress on the regulation mechanism of macrophage polarization and its role in wound healing[J]. Shandong Med J, 2022, 62(30): 103-107.
    [14]
    PENG Y, ZHOU M, YANG H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases[J]. Mediators Inflamm, 2023: 8821610. DOI: 10.1155/2023/8821610.
    [15]
    李镇江, 李书俊, 周健, 等. 不同时期增生性瘢痕组织中巨噬细胞活化相关因子的研究[J]. 遵义医科大学学报, 2022, 45(1): 87-91. DOI: 10.14169/j.cnki.zunyixuebao.2022.0007.

    LI ZJ, LI SJ, ZHOU J, et al. The study on macrophage activation related factors in hypertrophic scar tissue at different periods[J]. J Zunyi Med Univ, 2022, 45(1): 87-91. DOI: 10.14169/j.cnki.zunyixuebao.2022.0007.
    [16]
    CHAMBERS M, REES A, CRONIN JG, et al. Macrophage plasticity in reproduction and environmental influences on their function[J]. Front Immunol, 2021, 11: 607328. DOI: 10.3389/fimmu.2020.607328.
    [17]
    RYSMAKHANOV M, SMAGULOV A, MUSSIN N, et al. Retrograde reperfusion of renal grafts to reduce ischemic-reperfusion injury[J]. Korean J Transplant, 2022, 36(4): 253-258. DOI: 10.4285/kjt.22.0053.
    [18]
    NIEUWENHUIJS-MOEKE GJ, PISCHKE SE, BERGER SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. DOI: 10.3390/jcm9010253.
    [19]
    SOARES ROS, LOSADA DM, JORDANI MC, et al. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies[J]. Int J Mol Sci, 2019, 20(20): 5034. DOI: 10.3390/ijms20205034.
    [20]
    ZHANG F, LI Y, WU J, et al. The role of extracellular traps in ischemia reperfusion injury[J]. Front Immunol, 2022, 13: 1022380. DOI: 10.3389/fimmu.2022.1022380.
    [21]
    TANG Q, DONG C, SUN Q. Immune response associated with ischemia and reperfusion injury during organ transplantation[J]. Inflamm Res, 2022, 71(12): 1463-1476. DOI: 10.1007/s00011-022-01651-6.
    [22]
    CHEN H, LIU N, ZHUANG S. Macrophages in renal injury, repair, fibrosis following acute kidney injury and targeted therapy[J]. Front Immunol, 2022, 13: 934299. DOI: 10.3389/fimmu.2022.934299.
    [23]
    HU Z, ZHAN J, PEI G, et al. Depletion of macrophages with clodronate liposomes partially attenuates renal fibrosis on AKI-CKD transition[J]. Ren Fail, 2023, 45(1): 2149412. DOI: 10.1080/0886022X.2022.2149412.
    [24]
    LI L, GAN H, JIN H, et al. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats[J]. Int Immunopharmacol, 2021, 92:107335. DOI: 10.1016/j.intimp.2020.107335.
    [25]
    WANG N, NIE H, ZHANG Y, et al. Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway[J]. Inflamm Res, 2022, 71(1):93-106. DOI: 10.1007/s00011-021-01515-5.
    [26]
    HANCOCK WW, THOMSON NM, ATKINS RC. Composition of interstitial cellular infiltrate identified by monoclonal antibodies in renal biopsies of rejecting human renal allografts[J]. Transplantation, 1983, 35(5): 458-463. DOI: 10.1097/00007890-198305000-00013.
    [27]
    MUELLER FB, YANG H, LUBETZKY M, et al. Landscape of innate immune system transcriptome and acute T cell-mediated rejection of human kidney allografts[J]. JCI Insight, 2019, 4(13): e128014. DOI: 10.1172/jci.insight.128014.
    [28]
    ZHOU H, LU H, SUN L, et al. Diagnostic biomarkers and immune infiltration in patients with T cell-mediated rejection after kidney transplantation[J]. Front Immunol, 2022, 12: 774321. DOI: 10.3389/fimmu.2021.774321.
    [29]
    张翔, 王子杰, 郑明, 等. M1型巨噬细胞极化在内皮细胞转分化及慢性移植肾失功中的作用[J]. 南京医科大学学报(自然科学版), 2021, 41(9): 1296-1303, 1309.

    ZHANG X, WANG ZJ, ZHENG M, et al. The role of M1 polarized - macrophage in endothelial -to - myofibroblast transition and chronic allograft dysfunction[J]. J Nanjing Med Univ(Nat Sci), 2021, 41(9): 1296-1303, 1309.
    [30]
    WILSON NA, DYLEWSKI J, DEGNER KR, et al. An in vitro model of antibody-mediated injury to glomerular endothelial cells: upregulation of MHC class II and adhesion molecules[J]. Transpl Immunol, 2020, 58: 101261. DOI: 10.1016/j.trim.2019.101261.
    [31]
    JOSE MD, IKEZUMI Y, VAN ROOIJEN N, et al. Macrophages act as effectors of tissue damage in acute renal allograft rejection[J]. Transplantation, 2003, 76(7): 1015-1022. DOI: 10.1097/01.TP.0000083507.67995.13.
    [32]
    BRONTE V, SERAFINI P, DE SANTO C, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice[J]. J Immunol, 2003, 170(1): 270-278. DOI: 10.4049/jimmunol.170.1.270.
    [33]
    CONDE P, RODRIGUEZ M, VAN DER TOUW W, et al. DC-SIGN(+) macrophages control the induction of transplantation tolerance[J]. Immunity, 2015, 42(6): 1143-1158. DOI: 10.1016/j.immuni.2015.05.009.
    [34]
    GAO C, WANG X, LU J, et al. Mesenchymal stem cells transfected with sFgl2 inhibit the acute rejection of heart transplantation in mice by regulating macrophage activation[J]. Stem Cell Res Ther, 2020, 11(1): 241. DOI: 10.1186/s13287-020-01752-1.
    [35]
    LACKNER K, EBNER S, WATSCHINGER K, et al. Multiple shades of gray-macrophages in acute allograft rejection[J]. Int J Mol Sci, 2023, 24(9): 8257. DOI: 10.3390/ijms24098257.
    [36]
    LIU B, JIANG Q, CHEN R, et al. Tacrolimus ameliorates bleomycin-induced pulmonary fibrosis by inhibiting M2 macrophage polarization via JAK2/STAT3 signaling[J]. Int Immunopharmacol, 2022, 113(Pt A):109424. DOI: 10.1016/j.intimp.2022.109424.
    [37]
    JIANG B, ZHANG Y, LI Y, et al. A tissue-tended mycophenolate-modified nanoparticle alleviates systemic lupus erythematosus in MRL/Lpr mouse model mainly by promoting local M2-like macrophagocytes polarization[J]. Int J Nanomedicine, 2022,17:3251-3267. DOI: 10.2147/IJN.S361400.
    [38]
    QU R, ZHOU M, QIU Y, et al. Glucocorticoids improve the balance of M1/M2 macrophage polarization in experimental autoimmune uveitis through the P38MAPK-MEF2C axis[J]. Int Immunopharmacol, 2023, 120:110392. DOI: 10.1016/j.intimp.2023.110392.
    [39]
    VAN LOON E, GAZUT S, YAZDANI S, et al. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: a multicentre, prospective study[J]. EBioMedicine, 2019, 46: 463-472. DOI: 10.1016/j.ebiom.2019.07.028.
    [40]
    LI J, LI C, ZHUANG Q, et al. The evolving roles of macrophages in organ transplantation[J]. J Immunol Res, 2019: 5763430. DOI: 10.1155/2019/5763430.
    [41]
    JANIK MK, KRUK B, SZCZEPANKIEWICZ B, et al. Measurement of liver and spleen stiffness as complementary methods for assessment of liver fibrosis in autoimmune hepatitis[J]. Liver Int, 2021, 41(2): 348-356. DOI: 10.1111/liv.14726.
    [42]
    HELGESON ES, MANNON R, GRANDE J, et al. i-IFTA and chronic active T cell-mediated rejection: a tale of 2 (DeKAF) cohorts[J]. Am J Transplant, 2021, 21(5): 1866-1877. DOI: 10.1111/ajt.16352.
    [43]
    TOKI D, ZHANG W, HOR KL, et al. The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation[J]. Am J Transplant, 2014, 14(9): 2126-2136. DOI: 10.1111/ajt.12803.
    [44]
    IKEZUMI Y, SUZUKI T, YAMADA T, et al. Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury[J]. Pediatr Nephrol, 2015, 30(6): 1007-1017. DOI: 10.1007/s00467-014-3023-0.
    [45]
    PANZER SE. Macrophages in transplantation: a matter of plasticity, polarization, and diversity[J]. Transplantation, 2022, 106(2): 257-267. DOI: 10.1097/TP.0000000000003804.
    [46]
    HUTCHINSON JA, RIQUELME P, SAWITZKI B, et al. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients[J]. J Immunol, 2011, 187(5): 2072-2078. DOI: 10.4049/jimmunol.1100762.
    [47]
    SCALEA JR, TOMITA Y, LINDHOLM CR, et al. Transplantation tolerance induction: cell therapies and their mechanisms[J]. Front Immunol, 2016, 7: 87. DOI: 10.3389/fimmu.2016.00087.
    [48]
    RIQUELME P, TOMIUK S, KAMMLER A, et al. IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients[J]. Mol Ther, 2013, 21(2): 409-422. DOI: 10.1038/mt.2012.168.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (444) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return