Volume 14 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Liu Yanyao, Qin Xiaoyan, Wu Zhongjun. The role of neutrophil extracellular trap in the diagnosis and treatment of complications after liver transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 736-744. doi: 10.3969/j.issn.1674-7445.2023093
Citation: Liu Yanyao, Qin Xiaoyan, Wu Zhongjun. The role of neutrophil extracellular trap in the diagnosis and treatment of complications after liver transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 736-744. doi: 10.3969/j.issn.1674-7445.2023093

The role of neutrophil extracellular trap in the diagnosis and treatment of complications after liver transplantation

doi: 10.3969/j.issn.1674-7445.2023093
More Information
  • Corresponding author: Wu Zhongjun, Email: wzjtcy@126.com
  • Received Date: 2023-04-26
  • Accepted Date: 2023-07-14
  • Available Online: 2023-07-20
  • Publish Date: 2023-09-15
  • Prevention and treatment of complications after liver transplantation play a significant role in maintaining liver graft function and improving clinical prognosis of the recipients. Neutrophil extracellular trap (NET) are fibrous net-like structures composed of DNA as the skeleton and histones and granular proteins released by activated neutrophils. Studies have shown that the activation of neutrophils and the release of NET in donor liver after liver transplantation are involved in the incidence of multiple liver transplantation-related complications including ischemia-reperfusion injury, acute rejection, acute liver failure and recurrence of hepatocellular carcinoma, etc. In this article, the effect of NET on the complications after liver transplantation was mainly assessed, and research progress on NET as a potential target for the prevention and treatment of complications after liver transplantation was reviewed, aiming to provide reference for the prevention and treatment of complications after liver transplantation, enhance clinical efficacy of liver transplantation and improve clinical prognosis of the recipients.

     

  • loading
  • [1]
    庄莉, 刘相艳. 肝移植受者围手术期管理及并发症预防与治疗[J]. 中华消化外科杂志, 2021, 20(10): 1037-1041. DOI: 10.3760/cma.j.cn115610-20210915-00459.

    ZHUANG L, LIU XY. Perioperative management and complications prevention and treatment of recipients in liver transplantation[J]. Chin J Dig Surg, 2021, 20(10): 1037-1041. DOI: 10.3760/cma.j.cn115610-20210915-00459.
    [2]
    林鹏, 游悦楷, 刘建勇, 等. 补救性肝移植、再次肝切除和局部消融治疗肝癌术后复发的临床疗效及其预后危险因素[J]. 中华肝脏病杂志, 2023, 31(2): 155-160. DOI: 10.3760/cma.j.cn501113-20210727-00364.

    LIN P, YOU YK, LIU JY, et al. Clinical efficacy and prognostic risk factors of salvage liver transplantation, rehepatectomy, and local ablation in the treatment of postoperative recurrence of hepatocellular carcinoma[J]. Chin J Hepatol, 2023, 31(2): 155-160. DOI: 10.3760/cma.j.cn501113-20210727-00364.
    [3]
    LIU H, MAN K. New insights in mechanisms and therapeutics for short- and long-term impacts of hepatic ischemia reperfusion injury post liver transplantation[J]. Int J Mol Sci, 2021, 22(15): 8210. DOI: 10.3390/ijms22158210.
    [4]
    HERRE M, CEDERVALL J, MACKMAN N, et al. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases[J]. Physiol Rev, 2023, 103(1): 277-312. DOI: 10.1152/physrev.00062.2021.
    [5]
    偶绎颜, 崔娜娜, 李瑶, 等. 中性粒细胞胞外诱捕网在原发性胆汁性胆管炎患者中的作用初步探析[J]. 临床肝胆病杂志, 2022, 38(4): 810-814. DOI: 10.3969/j.issn.1001-5256.2022.04.014.

    OU YY, CUI NN, LI Y, et al. A preliminary study of the role of neutrophil extracellular traps in patients with primary biliary cholangitis[J]. J Clin Hepatol, 2022, 38(4): 810-814. DOI: 10.3969/j.issn.1001-5256.2022.04.014.
    [6]
    KALTENMEIER C, WANG R, POPP B, et al. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury[J]. Cells, 2022, 11(14): 2222. DOI: 10.3390/cells11142222.
    [7]
    HIRAO H, KOJIMA H, DERY KJ, et al. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation[J]. J Clin Invest, 2023, 133(3): e162940. DOI: 10.1172/JCI162940.
    [8]
    WU L, GAO X, GUO Q, et al. The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise[J]. Hepatol Int, 2020, 14(5): 652-666. DOI: 10.1007/s12072-020-10081-7.
    [9]
    BRINKMANN V. Neutrophil extracellular traps in the second decade[J]. J Innate Immun, 2018, 10(5/6): 414-421. DOI: 10.1159/000489829.
    [10]
    THIAM HR, WONG SL, QIU R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture[J]. Proc Natl Acad Sci U S A, 2020, 117(13): 7326-7337. DOI: 10.1073/pnas.1909546117.
    [11]
    KAPOOR S, OPNEJA A, NAYAK L. The role of neutrophils in thrombosis[J]. Thromb Res, 2018, 170: 87-96. DOI: 10.1016/j.thromres.2018.08.005.
    [12]
    VAN AVONDT K, HARTL D. Mechanisms and disease relevance of neutrophil extracellular trap formation[J]. Eur J Clin Invest, 2018, 48 (Suppl 2): e12919. DOI: 10.1111/eci.12919. DOI: 10.1111/eci.12919.
    [13]
    JORCH SK, KUBES P. An emerging role for neutrophil extracellular traps in noninfectious disease[J]. Nat Med, 2017, 23(3): 279-287. DOI: 10.1038/nm.4294.
    [14]
    BRANZK N, LUBOJEMSKA A, HARDISON SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens[J]. Nat Immunol, 2014, 15(11): 1017-1025. DOI: 10.1038/ni.2987.
    [15]
    THÅLIN C, HISADA Y, LUNDSTRÖM S, et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738. DOI: 10.1161/ATVBAHA.119.312463.
    [16]
    ADROVER JM, AROCA-CREVILLÉN A, CRAINICIUC G, et al. Programmed 'disarming' of the neutrophil proteome reduces the magnitude of inflammation[J]. Nat Immunol, 2020, 21(2): 135-144. DOI: 10.1038/s41590-019-0571-2.
    [17]
    OU Q, FANG JQ, ZHANG ZS, et al. TcpC inhibits neutrophil extracellular trap formation by enhancing ubiquitination mediated degradation of peptidylarginine deiminase 4[J]. Nat Commun, 2021, 12(1): 3481. DOI: 10.1038/s41467-021-23881-8.
    [18]
    CLAUSHUIS TAM, VAN DER DONK LEH, LUITSE AL, et al. Role of peptidylarginine deiminase 4 in neutrophil extracellular trap formation and host defense during klebsiella pneumoniae-induced pneumonia-derived sepsis[J]. J Immunol, 2018, 201(4): 1241-1252. DOI: 10.4049/jimmunol.1800314.
    [19]
    HALLBERG LAE, BARLOUS K, HAWKINS CL. Antioxidant strategies to modulate netosis and the release of neutrophil extracellular traps during chronic inflammation[J]. Antioxidants (Basel), 2023, 12(2): 478. DOI: 10.3390/antiox12020478.
    [20]
    CUI Y, YANG Y, TAO W, et al. Neutrophil extracellular traps induce alveolar macrophage pyroptosis by regulating NLRP3 deubiquitination, aggravating the development of septic lung injury[J]. J Inflamm Res, 2023, 16: 861-877. DOI: 10.2147/JIR.S366436.
    [21]
    CHO Y, BUKONG TN, TORNAI D, et al. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis[J]. J Hepatol, 2023, 78(1): 28-44. DOI: 10.1016/j.jhep.2022.08.029.
    [22]
    MARIN-ESTEBAN V, TURBICA I, DUFOUR G, et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells[J]. Infect Immun, 2012, 80(5): 1891-1899. DOI: 10.1128/IAI.00050-12.
    [23]
    CHEN K, SHAO LH, WANG F, et al. Netting gut disease: neutrophil extracellular trap in intestinal pathology[J]. Oxid Med Cell Longev, 2021: 5541222. DOI: 10.1155/2021/5541222.
    [24]
    RADERMECKER C, DETREMBLEUR N, GUIOT J, et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19[J]. J Exp Med, 2020, 217(12): e20201012. DOI: 10.1084/jem.20201012.
    [25]
    DENNING NL, AZIZ M, GURIEN SD, et al. DAMPs and NETs in sepsis[J]. Front Immunol, 2019, 10: 2536. DOI: 10.3389/fimmu.2019.02536.
    [26]
    LIU Y, YAN P, BIN Y, et al. Neutrophil extracellular traps and complications of liver transplantation[J]. Front Immunol, 2022, 13: 1054753. DOI: 10.3389/fimmu.2022.1054753.
    [27]
    YAZDANI HO, CHEN HW, TOHME S, et al. IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation[J]. J Hepatol, 2017: S0168-8278(17)32291-2. DOI: 10.1016/j.jhep.2017.09.010.
    [28]
    JIN J, WANG F, TIAN J, et al. Neutrophil extracellular traps contribute to coagulopathy after traumatic brain injury[J]. JCI Insight, 2023, 8(6): e141110. DOI: 10.1172/jci.insight.141110.
    [29]
    PÉREZ-CREMADES D, BUENO-BETÍ C, GARCÍA-GIMÉNEZ JL, et al. Extracellular histones trigger oxidative stress-dependent induction of the NF-kB/CAM pathway via TLR4 in endothelial cells[J]. J Physiol Biochem, 2023, 79(2):251-260. DOI: 10.1007/s13105-022-00935-z.
    [30]
    YANG J, JIN L, KIM HS, et al. KDM6A loss recruits tumor-associated neutrophils and promotes neutrophil extracellular trap formation in pancreatic cancer[J]. Cancer Res, 2022, 82(22): 4247-4260. DOI: 10.1158/0008-5472.CAN-22-0968.
    [31]
    ZHANG Y, HU Y, MA C, et al. Diagnostic, therapeutic predictive, and prognostic value of neutrophil extracellular traps in patients with gastric adenocarcinoma[J]. Front Oncol, 2020, 10: 1036. DOI: 10.3389/fonc.2020.01036.
    [32]
    DE MEO ML, SPICER JD. The role of neutrophil extracellular traps in cancer progression and metastasis[J]. Semin Immunol, 2021, 57: 101595. DOI: 10.1016/j.smim.2022.101595.
    [33]
    BOELTZ S, AMINI P, ANDERS HJ, et al. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps[J]. Cell Death Differ, 2019, 26(3): 395-408. DOI: 10.1038/s41418-018-0261-x.
    [34]
    VAN BREDA SV, VOKALOVA L, NEUGEBAUER C, et al. Computational methodologies for the in vitro and in situ quantification of neutrophil extracellular traps[J]. Front Immunol, 2019, 10: 1562. DOI: 10.3389/fimmu.2019.01562.
    [35]
    HARHALA M, GEMBARA K, MIERNIKIEWICZ P, et al. DNA dye sytox green in detection of bacteriolytic activity: high speed, precision and sensitivity demonstrated with endolysins[J]. Front Microbiol, 2021, 12: 752282. DOI: 10.3389/fmicb.2021.752282.
    [36]
    HAYDEN H, IBRAHIM N, KLOPF J, et al. ELISA detection of MPO-DNA complexes in human plasma is error-prone and yields limited information on neutrophil extracellular traps formed in vivo[J]. PLoS One, 2021, 16(4): e0250265. DOI: 10.1371/journal.pone.0250265.
    [37]
    ZHAO W, FOGG DK, KAPLAN MJ. A novel image-based quantitative method for the characterization of NETosis[J]. J Immunol Methods, 2015, 423: 104-110. DOI: 10.1016/j.jim.2015.04.027.
    [38]
    GAVILLET M, MARTINOD K, RENELLA R, et al. Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples[J]. Am J Hematol, 2015, 90(12): 1155-1158. DOI: 10.1002/ajh.24185.
    [39]
    KIM SJ, KIM J, KIM B, et al. Validation of CDr15 as a new dye for detecting neutrophil extracellular trap[J]. Biochem Biophys Res Commun, 2020, 527(3): 646-653. DOI: 10.1016/j.bbrc.2020.04.153.
    [40]
    XIANG S, WANG Y, LEI D, et al. Donor graft METTL3 gene transfer ameliorates rat liver transplantation ischemia-reperfusion injury by enhancing HO-1 expression in an m6A-dependent manner[J]. Clin Immunol, 2023,DOI: 10.1016/j.clim.2023.109325[Epub ahead of print
    [41]
    LEE J, SON S, KIM H, et al. Delta neutrophil index as a new early mortality predictor after liver transplantation[J]. J Clin Med, 2023, 12(7): 2501. DOI: 10.3390/jcm12072501.
    [42]
    OLIVEIRA THC, MARQUES PE, PROOST P, et al. Neutrophils: a cornerstone of liver ischemia and reperfusion injury[J]. Lab Invest, 2018, 98(1): 51-62. DOI: 10.1038/labinvest.2017.90.
    [43]
    WANG CL, WANG Y, JIANG QL, et al. DNase I and sivelestat ameliorate experimental hindlimb ischemia-reperfusion injury by eliminating neutrophil extracellular traps[J]. J Inflamm Res, 2023, 16: 707-721. DOI: 10.2147/JIR.S396049.
    [44]
    ZHU C, SHI S, JIANG P, et al. Curcumin alleviates hepatic ischemia-reperfusion injury by inhibiting neutrophil extracellular traps formation[J]. J Invest Surg, 2023, 36(1): 2164813. DOI: 10.1080/08941939.2022.2164813.
    [45]
    GUO J, AKAHOSHI T, MIZUTA Y, et al. Histidine-rich glycoprotein alleviates liver ischemia/reperfusion injury in mice with nonalcoholic steatohepatitis[J]. Liver Transpl, 2021, 27(6): 840-853. DOI: 10.1002/lt.25960.
    [46]
    ZHANG S, ZHANG Q, WANG F, et al. Hydroxychloroquine inhibiting neutrophil extracellular trap formation alleviates hepatic ischemia/reperfusion injury by blocking TLR9 in mice[J]. Clin Immunol, 2020, 216: 108461. DOI: 10.1016/j.clim.2020.108461.
    [47]
    ARUMUGAM S, GIRISH SUBBIAH K, KEMPARAJU K, et al. Neutrophil extracellular traps in acrolein promoted hepatic ischemia reperfusion injury: therapeutic potential of NOX2 and p38MAPK inhibitors[J]. J Cell Physiol, 2018, 233(4): 3244-3261. DOI: 10.1002/jcp.26167.
    [48]
    LIU Y, QIN X, LEI Z, et al. Tetramethylpyrazine inhibits neutrophil extracellular traps formation and alleviates hepatic ischemia/reperfusion injury in rat liver transplantation[J]. Exp Cell Res, 2021, 406(1): 112719. DOI: 10.1016/j.yexcr.2021.112719.
    [49]
    LIU Y, LEI Z, CHAI H, et al. Thrombomodulin-mediated inhibition of neutrophil extracellular trap formation alleviates hepatic ischemia-reperfusion injury by blocking TLR4 in rats subjected to liver transplantation[J]. Transplantation, 2022, 106(2): e126-e140. DOI: 10.1097/TP.0000000000003954.
    [50]
    CRAIG EV, HELLER MT. Complications of liver transplant[J]. Abdom Radiol (NY), 2021, 46(1): 43-67. DOI: 10.1007/s00261-019-02340-5.
    [51]
    MONTANO-LOZA AJ, RODRÍGUEZ-PERÁLVAREZ ML, PAGEAUX GP, et al. Liver transplantation immunology: immunosuppression, rejection, and immunomodulation[J]. J Hepatol, 2023, 78(6): 1199-1215. DOI: 10.1016/j.jhep.2023.01.030.
    [52]
    TANG T, XU T, LIU X, et al. Roles of BATF/JUN/IRF4 complex in tacrolimus mediated immunosuppression on Tfh cells in acute rejection after liver transplantation[J]. J Cell Physiol, 2021, 236(3): 1776-1786. DOI: 10.1002/jcp.29953.
    [53]
    TANER T, BRUNER J, EMAMAULLEE J, et al. New approaches to the diagnosis of rejection and prediction of tolerance in liver transplantation[J]. Transplantation, 2022, 106(10): 1952-1962. DOI: 10.1097/TP.0000000000004160.
    [54]
    SCHÜTZ E, FISCHER A, BECK J, et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study[J]. PLoS Med, 2017, 14(4): e1002286. DOI: 10.1371/journal.pmed.1002286.
    [55]
    LEVITSKY J, KANDPAL M, GUO K, et al. Donor-derived cell-free DNA levels predict graft injury in liver transplant recipients[J]. Am J Transplant, 2022, 22(2): 532-540. DOI: 10.1111/ajt.16835.
    [56]
    LIU Y, PU X, QIN X, et al. Neutrophil extracellular traps regulate HMGB1 translocation and Kupffer cell M1 polarization during acute liver transplantation rejection[J]. Front Immunol, 2022, 13: 823511. DOI: 10.3389/fimmu.2022.823511.
    [57]
    SHINGINA A, ZIOGAS IA, VUTIEN P, et al. Adult-to-adult living donor liver transplantation in acute liver failure[J]. Transplant Rev (Orlando), 2022, 36(2): 100691. DOI: 10.1016/j.trre.2022.100691.
    [58]
    YE D, YAO J, DU W, et al. Neutrophil extracellular traps mediate acute liver failure in regulation of miR-223/neutrophil elastase signaling in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(3): 587-607. DOI: 10.1016/j.jcmgh.2022.05.012.
    [59]
    MEIJENFELDT FA, STRAVITZ RT, ZHANG J, et al. Generation of neutrophil extracellular traps in patients with acute liver failure is associated with poor outcome[J]. Hepatology, 2022, 75(3): 623-633. DOI: 10.1002/hep.32174.
    [60]
    BLASI A, PATEL VC, ADELMEIJER J, et al. Plasma levels of circulating DNA are associated with outcome, but not with activation of coagulation in decompensated cirrhosis and ACLF[J]. JHEP Reports, 2019, 1(3): 179-187. DOI: 10.1016/j.jhepr.2019.06.002.
    [61]
    STRAŚ WA, WASIAK D, ŁĄGIEWSKA B, et al. Recurrence of hepatocellular carcinoma after liver transplantation: risk factors and predictive models[J]. Ann Transplant, 2022, 27: e934924. DOI: 10.12659/AOT.934924.
    [62]
    KIM SJ, KIM JM. Prediction models of hepatocellular carcinoma recurrence after liver transplantation: a comprehensive review[J]. Clin Mol Hepatol, 2022, 28(4): 739-753. DOI: 10.3350/cmh.2022.0060.
    [63]
    European Association for the Study of the Liver. EASL clinical practice guidelines on haemochromatosis[J]. J Hepatol, 2022, 77(2): 479-502. DOI: 10.1016/j.jhep.2022.03.033.
    [64]
    KORNBERG A, KASCHNY L, KORNBERG J, et al. Preoperative prognostic nutritional index may be a strong predictor of hepatocellular carcinoma recurrence following liver transplantation[J]. J Hepatocell Carcinoma, 2022, 9: 649-660. DOI: 10.2147/JHC.S366107.
    [65]
    ZHANG D, FENG D, REN M, et al. Preoperative serum hepatitis B virus DNA was a risk factor for hepatocellular carcinoma recurrence after liver transplantation[J]. Ann Med, 2022, 54(1): 2213-2221. DOI: 10.1080/07853890.2022.2107233.
    [66]
    YANG L, LIU Q, ZHANG X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583(7814): 133-138. DOI: 10.1038/s41586-020-2394-6.
    [67]
    CHEN Q, ZHANG L, LI X, et al. Neutrophil extracellular traps in tumor metastasis: pathological functions and clinical applications[J]. Cancers (Basel), 2021, 13(11): 2832. DOI: 10.3390/cancers13112832.
    [68]
    LEACH J, MORTON JP, SANSOM OJ. Neutrophils: homing in on the myeloid mechanisms of metastasis[J]. Mol Immunol, 2019, 110: 69-76. DOI: 10.1016/j.molimm.2017.12.013.
    [69]
    ZHONG W, WANG Q, SHEN X, et al. The emerging role of neutrophil extracellular traps in cancer: from lab to ward[J]. Front Oncol, 2023, 13: 1163802. DOI: 10.3389/fonc.2023.1163802.
    [70]
    NAJMEH S, COOLS-LARTIGUE J, RAYES RF, et al. Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions[J]. Int J Cancer, 2017, 140(10): 2321-2330. DOI: 10.1002/ijc.30635.
    [71]
    LEE J, LEE D, LAWLER S, et al. Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: structural insights from a computational model[J]. PLoS Comput Biol, 2021, 17(2): e1008257. DOI: 10.1371/journal.pcbi.1008257.
    [72]
    KALTENMEIER CT, YAZDANI H, VAN DER WINDT D, et al. Neutrophil extracellular traps as a novel biomarker to predict recurrence-free and overall survival in patients with primary hepatic malignancies[J]. HPB (Oxford), 2021, 23(2): 309-320. DOI: 10.1016/j.hpb.2020.06.012.
    [73]
    CHENG Y, GONG Y, CHEN X, et al. Injectable adhesive hemostatic gel with tumor acidity neutralizer and neutrophil extracellular traps lyase for enhancing adoptive NK cell therapy prevents post-resection recurrence of hepatocellular carcinoma[J]. Biomaterials, 2022, 284: 121506. DOI: 10.1016/j.biomaterials.2022.121506.
    [74]
    YANG D, LIU J. Neutrophil extracellular traps: a new player in cancer metastasis and therapeutic target[J]. J Exp Clin Cancer Res, 2021, 40(1): 233. DOI: 10.1186/s13046-021-02013-6.
    [75]
    WANG Z, CHEN C, SHI C, et al. Cell membrane derived liposomes loaded with DNase I target neutrophil extracellular traps which inhibits colorectal cancer liver metastases[J]. J Control Release, 2023, 357: 620-629. DOI: 10.1016/j.jconrel.2023.04.013.
    [76]
    MANFREDI AA, ROVERE-QUERINI P, D'ANGELO A, et al. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps[J]. Pharmacol Res, 2017, 123: 146-156. DOI: 10.1016/j.phrs.2016.08.008.
    [77]
    WANG P, LIU D, ZHOU Z, et al. The role of protein arginine deiminase 4-dependent neutrophil extracellular traps formation in ulcerative colitis[J]. Front Immunol, 2023,DOI: 10.3389/fimmu.2023.1144976[Epub ahead of print
    [78]
    WANG B, SU X, ZHANG B, et al. GSK484, an inhibitor of peptidyl arginine deiminase 4, increases the radiosensitivity of colorectal cancer and inhibits neutrophil extracellular traps[J]. J Gene Med, 2023, DOI: 10.1002/jgm.3530[Epub ahead of print
    [79]
    LI M, LIN C, DENG H, et al. A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma[J]. Mol Cancer Ther, 2020, 19(7): 1530-1538. DOI: 10.1158/1535-7163.MCT-19-1020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (238) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return