Volume 14 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Hu Lu, Nian Yeqi. Advances in application of regulatory T cells in transplant immune tolerance: from basic to clinical research[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 745-753. doi: 10.3969/j.issn.1674-7445.2023049
Citation: Hu Lu, Nian Yeqi. Advances in application of regulatory T cells in transplant immune tolerance: from basic to clinical research[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 745-753. doi: 10.3969/j.issn.1674-7445.2023049

Advances in application of regulatory T cells in transplant immune tolerance: from basic to clinical research

doi: 10.3969/j.issn.1674-7445.2023049
More Information
  • Corresponding author: Nian Yeqi, Email: nianyeqi3014@hotmail.com
  • Received Date: 2023-04-28
  • Accepted Date: 2023-07-10
  • Available Online: 2023-07-20
  • Publish Date: 2023-09-15
  • Regulatory T cells (Treg) are important inhibitory immune cells to establish immune tolerance, which play a pivotal role in regulating excessive immune response and autoimmune diseases of the host. Previous studies related to transplant immune tolerance have confirmed that increasing the number of Treg in vivo or enhancing the function of Treg serve as a therapeutic strategy to induce transplant immune tolerance. At present, Treg-based induction methods for transplant immune tolerance include adoptive infusion of Treg, in vivo amplification of Treg and utilization of antigen-specific Treg. In this article, the characteristics and mechanism of Treg, the latest research progress on basic experiments and clinical practice of Treg related to transplant immune tolerance at home and abroad were reviewed, and future challenges and development of Treg therapy were prospected, aiming to unravel the significance and application prospect of Treg in transplant immune tolerance, explore the advantages and limitations of Treg therapeutic strategies, and provide reference and evidence for subsequent research in this field.

     

  • loading
  • [1]
    SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164. DOI: 10.4049/jimmunol.155.3.1151.
    [2]
    HORI S, NOMURA T, SAKAGUCHI S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299(5609): 1057-1061. DOI: 10.1126/science.1079490.
    [3]
    SAKAGUCHI S. Taking regulatory T cells into medicine[J]. J Exp Med, 2021, 218(6): e20210831. DOI: 10.1084/jem.20210831.
    [4]
    WHANGBO JS, NIKIFOROW S, KIM HT, et al. A phase 1 study of donor regulatory T-cell infusion plus low-dose interleukin-2 for steroid-refractory chronic graft-vs-host disease[J]. Blood Adv, 2022, 6(21): 5786-5796. DOI: 10.1182/bloodadvances.2021006625.
    [5]
    LAPP MM, LIN G, KOMIN A, et al. Modeling the potential of Treg-based therapies for transplant rejection: effect of dose, timing, and accumulation site[J]. Transpl Int, 2022, 35: 10297. DOI: 10.3389/ti.2022.10297.
    [6]
    石炳毅, 陈文, 刘志佳. 调节性免疫细胞在异种移植免疫中的作用[J]. 器官移植, 2020, 11(3): 321-325. DOI: 10.3969/j.issn.1674-7445.2020.03.001.

    SHI BY, CHEN W, LIU ZJ. The function of regulatory immunological cell in xenotransplantation immunity[J]. Organ Transplant, 2020, 11(3): 321-325. DOI: 10.3969/j.issn.1674-7445.2020.03.001.
    [7]
    轩娟娟, 白鸿太, 张继翔, 等. 调节性T细胞亚群在肝移植中的作用及临床应用进展[J]. 中国组织工程研究, 2022, 26(7): 1143-1148.

    XUAN JJ, BAI HT, ZHANG JX, et al. Role of regulatory T cell subsets in liver transplantation and progress in clinical application[J]. Chin J Tissue Eng Res, 2022, 26(7): 1143-1148.
    [8]
    VAN DER VEEKEN J, CAMPBELL C, PRITYKIN Y, et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells[J]. Immunity, 2022, 55(7): 1173-1184. DOI: 10.1016/j.immuni.2022.05.010.
    [9]
    OHKURA N, SAKAGUCHI S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases[J]. Cell Res, 2020, 30(6): 465-474. DOI: 10.1038/s41422-020-0324-7.
    [10]
    FERREIRA RC, SIMONS HZ, THOMPSON WS, et al. Cells with Treg-specific Foxp3 demethylation but low CD25 are prevalent in autoimmunity[J]. J Autoimmun, 2017, 84: 75-86. DOI: 10.1016/j.jaut.2017.07.009.
    [11]
    MIYARA M, YOSHIOKA Y, KITOH A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor[J]. Immunity, 2009, 30(6): 899-911. DOI: 10.1016/j.immuni.2009.03.019.
    [12]
    BROWN ME, PETERS LD, HANBALI SR, et al. Human CD4+CD25+CD226- Tregs demonstrate increased purity, lineage stability, and suppressive capacity versus CD4+CD25+CD127lo/- Tregs for adoptive cell therapy[J]. Front Immunol, 2022, 13: 873560. DOI: 10.3389/fimmu.2022.873560.
    [13]
    LAM AJ, UDAY P, GILLIES JK, et al. Helios is a marker, not a driver, of human Treg stability[J]. Eur J Immunol, 2022, 52(1): 75-84. DOI: 10.1002/eji.202149318.
    [14]
    SO L, OBATA-NINOMIYA K, HU A, et al. Regulatory T cells suppress CD4+ effector T cell activation by controlling protein synthesis[J]. J Exp Med, 2023, 220(3): e20221676. DOI: 10.1084/jem.20221676.
    [15]
    KURELIC R, KRIEG PF, SONNER JK, et al. Upregulation of phosphodiesterase 2A augments T cell activation by changing cGMP/cAMP cross-talk[J]. Front Pharmacol, 2021, 12: 748798. DOI: 10.3389/fphar.2021.748798.
    [16]
    LEGOUX FP, LIM JB, CAULEY AW, et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion[J]. Immunity, 2015, 43(5): 896-908. DOI: 10.1016/j.immuni.2015.10.011.
    [17]
    ESKANDARI SK, SULKAJ I, MELO MB, et al. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter[J]. Sci Transl Med, 2020, 12(569): eaaw4744. DOI: 10.1126/scitranslmed.aaw4744.
    [18]
    GOTOT J, DHANA E, YAGITA H, et al. Antigen-specific Helios- , Neuropilin-1- Tregs induce apoptosis of autoreactive B cells via PD-L1[J]. Immunol Cell Biol, 2018, 96(8): 852-862. DOI: 10.1111/imcb.12053.
    [19]
    ZHANG Y, MAKSIMOVIC J, NASELLI G, et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by Foxp3 in human regulatory T cells[J]. Blood, 2013, 122(16): 2823-2836. DOI: 10.1182/blood-2013-02-481788.
    [20]
    MANIERI NA, CHIANG EY, GROGAN JL. TIGIT: a key inhibitor of the cancer immunity cycle[J]. Trends Immunol, 2017, 38(1): 20-28. DOI: 10.1016/j.it.2016.10.002.
    [21]
    BÉZIE S, FREUCHET A, SÉRAZIN C, et al. IL-34 actions on Foxp3+ Tregs and CD14+ monocytes control human graft rejection[J]. Front Immunol, 2020, 11: 1496. DOI: 10.3389/fimmu.2020.01496.
    [22]
    FIYOUZI T, PELAEZ-PRESTEL HF, REYES-MANZANAS R, et al. Enhancing regulatory T cells to treat inflammatory and autoimmune diseases[J]. Int J Mol Sci, 2023, 24(9): 7797. DOI: 10.3390/ijms24097797.
    [23]
    SAWITZKI B, HARDEN PN, REINKE P, et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials[J]. Lancet, 2020, 395(10237): 1627-1639. DOI: 10.1016/S0140-6736(20)30167-7.
    [24]
    JOFFRE O, GORSSE N, ROMAGNOLI P, et al. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes[J]. Blood, 2004, 103(11): 4216-4221. DOI: 10.1182/blood-2004-01-0005.
    [25]
    MARTIN-MORENO PL, TRIPATHI S, CHANDRAKER A. Regulatory T cells and kidney transplantation[J]. Clin J Am Soc Nephrol, 2018, 13(11): 1760-1764. DOI: 10.2215/CJN.01750218.
    [26]
    LAVAZZA C, BUDELLI S, MONTELATICI E, et al. Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product[J]. J Transl Med, 2022, 20(1): 14. DOI: 10.1186/s12967-021-03200-x.
    [27]
    FRASER H, SAFINIA N, GRAGEDA N, et al. A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials[J]. Mol Ther Methods Clin Dev, 2018, 8: 198-209. DOI: 10.1016/j.omtm.2018.01.006.
    [28]
    BAETEN P, VAN ZEEBROECK L, KLEINEWIETFELD M, et al. Improving the efficacy of regulatory T cell therapy[J]. Clin Rev Allergy Immunol, 2022, 62(2): 363-381. DOI: 10.1007/s12016-021-08866-1.
    [29]
    BROOK MO, HESTER J, PETCHEY W, et al. Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients[J]. BMJ Open, 2022, 12(4): e061864. DOI: 10.1136/bmjopen-2022-061864.
    [30]
    HARDEN PN, GAME DS, SAWITZKI B, et al. Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients[J]. Am J Transplant, 2021, 21(4): 1603-1611. DOI: 10.1111/ajt.16395.
    [31]
    HARRIS F, BERDUGO YA, TREE T. IL-2-based approaches to Treg enhancement[J]. Clin Exp Immunol, 2023, 211(2): 149-163. DOI: 10.1093/cei/uxac105.
    [32]
    KOLIOS AGA, TSOKOS GC, KLATZMANN D. Interleukin-2 and regulatory T cells in rheumatic diseases[J]. Nat Rev Rheumatol, 2021, 17(12): 749-766. DOI: 10.1038/s41584-021-00707-x.
    [33]
    KIM HT, KORETH J, WHANGBO J, et al. Organ-specific response after low-dose interleukin-2 therapy for steroid-refractory chronic graft-versus-host disease[J]. Blood Adv, 2022, 6(15): 4392-4402. DOI: 10.1182/bloodadvances.2022007773.
    [34]
    WHANGBO JS, KIM HT, MIRKOVIC N, et al. Dose-escalated interleukin-2 therapy for refractory chronic graft-versus-host disease in adults and children[J]. Blood Adv, 2019, 3(17): 2550-2561. DOI: 10.1182/bloodadvances.2019000631.
    [35]
    MEGURI Y, ASANO T, YOSHIOKA T, et al. Responses of regulatory and effector T-cells to low-dose interleukin-2 differ depending on the immune environment after allogeneic stem cell transplantation[J]. Front Immunol, 2022, 13: 891925. DOI: 10.3389/fimmu.2022.891925.
    [36]
    ZHOU P. Emerging mechanisms and applications of low-dose IL-2 therapy in autoimmunity[J]. Cytokine Growth Factor Rev, 2022, 67: 80-88. DOI: 10.1016/j.cytogfr.2022.06.003.
    [37]
    WILSON MS, PESCE JT, RAMALINGAM TR, et al. Suppression of murine allergic airway disease by IL-2: anti-IL-2 monoclonal antibody-induced regulatory T cells[J]. J Immunol, 2008, 181(10): 6942-6954. DOI: 10.4049/jimmunol.181.10.6942.
    [38]
    WING JB, TANAKA A, SAKAGUCHI S. Human Foxp3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316. DOI: 10.1016/j.immuni.2019.01.020.
    [39]
    HU M, HAWTHORNE WJ, NICHOLSON L, et al. Low-dose interleukin-2 combined with rapamycin led to an expansion of CD4+CD25+Foxp3+ regulatory T cells and prolonged human islet allograft survival in humanized mice[J]. Diabetes, 2020, 69(8): 1735-1748. DOI: 10.2337/db19-0525.
    [40]
    ZHANG B, SUN J, WANG Y, et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells[J]. Nat Biomed Eng, 2021, 5(11): 1288-1305. DOI: 10.1038/s41551-021-00797-8.
    [41]
    MURAKAMI N, BORGES TJ, WIN TS, et al. Low-dose interleukin-2 promotes immune regulation in face transplantation: a pilot study[J]. Am J Transplant, 2023, 23(4): 549-558. DOI: 10.1016/j.ajt.2023.01.016.
    [42]
    MCGOVERN J, HOLLER A, THOMAS S, et al. Forced Foxp3 expression can improve the safety and antigen-specific function of engineered regulatory T cells[J]. J Autoimmun, 2022, 132: 102888. DOI: 10.1016/j.jaut.2022.102888.
    [43]
    BLUESTONE JA, TANG Q. Treg cells-the next frontier of cell therapy[J]. Science, 2018, 362(6411): 154-155. DOI: 10.1126/science.aau2688.
    [44]
    FERREIRA LMR, MULLER YD, BLUESTONE JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18(10): 749-769. DOI: 10.1038/s41573-019-0041-4.
    [45]
    HU M, ROGERS NM, LI J, et al. Antigen specific regulatory T cells in kidney transplantation and other tolerance settings[J]. Front Immunol, 2021, 12: 717594. DOI: 10.3389/fimmu.2021.717594.
    [46]
    PUTNAM AL, SAFINIA N, MEDVEC A, et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation[J]. Am J Transplant, 2013, 13(11): 3010-3020. DOI: 10.1111/ajt.12433.
    [47]
    TRIPATHI S, MARTIN-MORENO PL, KAVALAM G, et al. Adenosinergic pathway and linked suppression: two critical suppressive mechanisms of human donor antigen specific regulatory T cell lines expanded post transplant[J]. Front Immunol, 2022, 13: 849939. DOI: 10.3389/fimmu.2022.849939.
    [48]
    SANDERS JM, JEYAMOGAN S, MATHEW JM, et al. Foxp3+ regulatory T cell therapy for tolerance in autoimmunity and solid organ transplantation[J]. Front Immunol, 2022, 13: 1055466. DOI: 10.3389/fimmu.2022.1055466.
    [49]
    YANG SJ, SINGH AK, DROW T, et al. Pancreatic islet-specific engineered Tregs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models[J]. Sci Transl Med, 2022, 14(665): eabn1716. DOI: 10.1126/scitranslmed.abn1716.
    [50]
    RANA J, BISWAS M. Regulatory T cell therapy: current and future design perspectives[J]. Cell Immunol, 2020, 356: 104193. DOI: 10.1016/j.cellimm.2020.104193.
    [51]
    FRITSCHE E, VOLK HD, REINKE P, et al. Toward an optimized process for clinical manufacturing of CAR-Treg cell therapy[J]. Trends Biotechnol, 2020, 38(10): 1099-1112. DOI: 10.1016/j.tibtech.2019.12.009.
    [52]
    吴俣, 李佩璐, 葛军, 等. 嵌合抗原受体调节性T细胞免疫疗法在器官移植中的应用[J]. 器官移植, 2020, 11(5): 547-552. DOI: 10.3969/j.issn.1674-7445.2020.05.003.

    WU Y, LI PL, GE J, et al. Application of chimeric antigen receptor-regulatory T cell immunotherapy in organ transplantation[J]. Organ Transplant, 2020, 11(5): 547-552. DOI: 10.3969/j.issn.1674-7445.2020.05.003.
    [53]
    MULLER YD, FERREIRA LMR, RONIN E, et al. Precision engineering of an anti-HLA-A2 chimeric antigen receptor in regulatory T cells for transplant immune tolerance[J]. Front Immunol, 2021, 12: 686439. DOI: 10.3389/fimmu.2021.686439.
    [54]
    BOROUGHS AC, LARSON RC, CHOI BD, et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function[J]. JCI Insight, 2019, 5(8): e126194. DOI: 10.1172/jci.insight.126194.
    [55]
    BOLIVAR-WAGERS S, LARSON JH, JIN S, et al. Cytolytic CD4+ and CD8+ regulatory T-cells and implications for developing immunotherapies to combat graft-versus-host disease[J]. Front Immunol, 2022, 13: 864748. DOI: 10.3389/fimmu.2022.864748.
    [56]
    张温乐, 于怡萌, 雷轶, 等. 调节性T细胞免疫疗法在自身免疫疾病治疗和移植免疫中的应用[J]. 药学进展, 2023, 47(1): 35-42. DOI: 10.20053/j.issn1001-5094.2023.01.004.

    ZHANG WL, YU YM, LEI Y, et al. Application of Treg cell immunotherapy in the treatment of autoimmune diseases and transplantation immunity[J]. Prog Pharm Sci, 2023, 47(1): 35-42. DOI: 10.20053/j.issn1001-5094.2023.01.004.
    [57]
    LIECHTI T, ROEDERER M. OMIP-060: 30-parameter flow cytometry panel to assess T cell effector functions and regulatory T cells[J]. Cytometry A, 2019, 95(11): 1129-1134. DOI: 10.1002/cyto.a.23853.
    [58]
    SCHERLINGER M, PAN W, HISADA R, et al. Phosphofructokinase P fine-tunes T regulatory cell metabolism, function, and stability in systemic autoimmunity[J]. Sci Adv, 2022, 8(48): eadc9657. DOI: 10.1126/sciadv.adc9657.
    [59]
    EYQUEM J, MANSILLA-SOTO J, GIAVRIDIS T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643): 113-117. DOI: 10.1038/nature21405.
    [60]
    KUOCH H, KROTOVA K, GRAHAM ML, et al. Multiplexing AAV serotype-specific neutralizing antibodies in preclinical animal models and humans[J]. Biomedicines, 2023, 11(2): 523. DOI: 10.3390/biomedicines11020523.
    [61]
    ROTH TL, PUIG-SAUS C, YU R, et al. Reprogramming human T cell function and specificity with non-viral genome targeting[J]. Nature, 2018, 559(7714): 405-409. DOI: 10.1038/s41586-018-0326-5.
    [62]
    DEUSE T, HU X, GRAVINA A, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients[J]. Nat Biotechnol, 2019, 37(3): 252-258. DOI: 10.1038/s41587-019-0016-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (554) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return