Volume 14 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Leng Qianghua, Han Fei, Huang Zhengyu. Application progress on contrast-enhanced ultrasound in acute rejection after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 514-520. doi: 10.3969/j.issn.1674-7445.2023.04.007
Citation: Leng Qianghua, Han Fei, Huang Zhengyu. Application progress on contrast-enhanced ultrasound in acute rejection after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 514-520. doi: 10.3969/j.issn.1674-7445.2023.04.007

Application progress on contrast-enhanced ultrasound in acute rejection after kidney transplantation

doi: 10.3969/j.issn.1674-7445.2023.04.007
More Information
  • Corresponding author: Huang Zhengyu, Email: hzhengy@mail.sysu.edu.cn
  • Received Date: 2023-03-01
    Available Online: 2023-07-13
  • Publish Date: 2023-07-15
  • Early diagnosis of acute rejection is of significance for the protection of renal allograft function. Pathological puncture biopsy is the gold standard for the diagnosis of acute rejection of renal allografts. Nevertheless, it may provoke multiple complications, such as bleeding, infection and renal parenchymal injury, which limit its widespread application. In recent years, the sensitivity of contrast-enhanced ultrasound in the diagnosis of acute rejection has been constantly improved. Ultrasound-targeted microbubble technique has further enhanced the diagnostic specificity of contrast-enhanced ultrasound, making it possible to replace pathological puncture biopsy. Besides, in the field of acute rejection treatment, microbubble ultrasonic cavitation may promote local delivery of immunosuppressants by inducing sonoporation and exhibit anti-rejection effect. In this article, the application of contrast-enhanced ultrasound in the diagnosis and treatment of acute rejection after kidney transplantation was reviewed, aiming to provide reference for widespread application of contrast-enhanced ultrasound in kidney transplantation.

     

  • loading
  • [1]
    BECKER JU, SERON D, RABANT M, et al. Evolution of the definition of rejection in kidney transplantation and its use as an endpoint in clinical trials[J]. Transpl Int, 2022, 35: 10141. DOI: 10.3389/ti.2022.10141.
    [2]
    FATTHY M, SALEH A, AHMED RA, et al. Incidence and determinants of complications of percutaneous kidney biopsy in a large cohort of native kidney and kidney transplant recipients[J]. Sultan Qaboos Univ Med J, 2022, 22(2): 268-273. DOI: 10.18295/squmj.5.2021.107.
    [3]
    SIDHU PS, CANTISANI V, DIETRICH CF, et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (long version)[J]. Ultraschall Med, 2018, 39(2): e2-e44. DOI: 10.1055/a-0586-1107.
    [4]
    ZHANG L, LIN Z, ZENG L, et al. Ultrasound-induced biophysical effects in controlled drug delivery[J]. Sci China Life Sci, 2022, 65(5): 896-908. DOI: 10.1007/s11427-021-1971-x.
    [5]
    GRANATA A, CAMPO I, LENTINI P, et al. Role of contrast-enhanced ultrasound (CEUS) in native kidney pathology: limits and fields of action[J]. Diagnostics (Basel), 2021, 11(6): 1058. DOI: 10.3390/diagnostics11061058.
    [6]
    LI Q, YANG K, JI Y, et al. Safety analysis of adverse events of ultrasound contrast agent Lumason/SonoVue in 49, 100 patients[J]. Ultrasound Med Biol, 2023, 49(2): 454-459. DOI: 10.1016/j.ultrasmedbio.2022.09.014.
    [7]
    MORGAN TA, JHA P, PODER L, et al. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow[J]. Abdom Radiol (NY), 2018, 43(10): 2604-2614. DOI: 10.1007/s00261-018-1585-1.
    [8]
    MUELLER-PELTZER K, NEGRÃO DE FIGUEIREDO G, FISCHEREDER M, et al. Vascular rejection in renal transplant: diagnostic value of contrast-enhanced ultrasound (CEUS) compared to biopsy[J]. Clin Hemorheol Microcirc, 2018, 69(1/2): 77-82. DOI: 10.3233/CH-189115.
    [9]
    HAI Y, CHONG W, LIU JB, et al. The diagnostic value of contrast-enhanced ultrasound for monitoring complications after kidney transplantation-a systematic review and meta-analysis[J]. Acad Radiol, 2021, 28(8): 1086-1093. DOI: 10.1016/j.acra.2020.05.009.
    [10]
    LERCHBAUMER MH, FISCHER T, ULUK D, et al. Diagnostic value of contrast-enhanced ultrasound (CEUS) in kidney allografts - 12 years of experience in a tertiary referral center[J]. Clin Hemorheol Microcirc, 2022, 82(1): 75-83. DOI: 10.3233/CH-211357.
    [11]
    SELBY NM, WILLIAMS JP, PHILLIPS BE. Application of dynamic contrast enhanced ultrasound in the assessment of kidney diseases[J]. Curr Opin Nephrol Hypertens, 2021, 30(1): 138-143. DOI: 10.1097/MNH.0000000000000664.
    [12]
    GOYAL A, HEMACHANDRAN N, KUMAR A, et al. Evaluation of the graft kidney in the early postoperative period: performance of contrast-enhanced ultrasound and additional ultrasound parameters[J]. J Ultrasound Med, 2021, 40(9): 1771-1783. DOI: 10.1002/jum.15557.
    [13]
    VIČIČ E, KOJC N, HOVELJA T, et al. Quantitative contrast-enhanced ultrasound for the differentiation of kidney allografts with significant histopathological injury[J]. Microcirculation, 2021, 28(8): e12732. DOI: 10.1111/micc.12732.
    [14]
    KIM DG, LEE JY, AHN JH, et al. Quantitative ultrasound for non-invasive evaluation of subclinical rejection in renal transplantation[J]. Eur Radiol, 2023, 33(4): 2367-2377. DOI: 10.1007/s00330-022-09260-x.
    [15]
    FRIEDL S, JUNG EM, BERGLER T, et al. Factors influencing the time-intensity curve analysis of contrast-enhanced ultrasound in kidney transplanted patients: toward a standardized contrast-enhanced ultrasound examination[J]. Front Med (Lausanne), 2022, 9: 928567. DOI: 10.3389/fmed.2022.928567.
    [16]
    AGGARWAL A, GOSWAMI S, DAS CJ. Contrast-enhanced ultrasound of the kidneys: principles and potential applications[J]. Abdom Radiol (NY), 2022, 47(4): 1369-1384. DOI: 10.1007/s00261-022-03438-z.
    [17]
    DAVID E, DEL GAUDIO G, DRUDI FM, et al. Contrast enhanced ultrasound compared with MRI and CT in the evaluation of post-renal transplant complications[J]. Tomography, 2022, 8(4): 1704-1715. DOI: 10.3390/tomography8040143.
    [18]
    ELEC FI, MOISOIU T, SOCACIU MA, et al. Difficulties in diagnosing HIV-associated nephropathy in kidney transplanted patients. the role of ultrasound and CEUS[J]. Med Ultrason, 2020, 22(4): 488-491. DOI: 10.11152/mu-2314.
    [19]
    KHODABAKHSHI Z, HOSSEINKHAH N, GHADIRI H. Pulsating microbubble in a micro-vessel and mechanical effect on vessel wall: a simulation study[J]. J Biomed Phys Eng, 2021, 11(5): 629-640. DOI: 10.31661/jbpe.v0i0.1131.
    [20]
    LUKÁČ R, KAUEROVÁ Z, MAŠEK J, et al. Preparation of metallochelating microbubbles and study on their site-specific interaction with rGFP-HisTag as a model protein[J]. Langmuir, 2011, 27(8): 4829-4837. DOI: 10.1021/la104677b.
    [21]
    KLIBANOV AL. Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging[J]. Bioconjug Chem, 2005, 16(1): 9-17. DOI: 10.1021/bc049898y.
    [22]
    GRABNER A, KENTRUP D, PAWELSKI H, et al. Renal contrast-enhanced sonography findings in a model of acute cellular allograft rejection[J]. Am J Transplant, 2016, 16(5): 1612-1619. DOI: 10.1111/ajt.13648.
    [23]
    LIU J, CHEN Y, WANG G, et al. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes[J]. Biomaterials, 2018, 162: 200-207. DOI: 10.1016/j.biomaterials.2018.02.017.
    [24]
    XIE Y, CHEN Y, ZHANG L, et al. Ultrasound molecular imaging of lymphocyte-endothelium adhesion cascade in acute cellular rejection of cardiac allografts[J]. Transplantation, 2019, 103(8): 1603-1611. DOI: 10.1097/TP.0000000000002698.
    [25]
    郝军军, 郭锋伟. 补体C4d、高敏C反应蛋白及肾移植术后Th1、Th2水平与排斥反应的相关性[J]. 中国临床研究, 2022, 35(10): 1356-1360, 1365. DOI: 10.13429/j.cnki.cjcr.2022.10.005.

    HAO JJ, GUO FW. Associations of complement C4d, hs-CRP and Th1, Th2 levels with rejection after renal transplantation[J]. Chin J Clin Res, 2022, 35(10): 1356-1360, 1365. DOI: 10.13429/j.cnki.cjcr.2022.10.005.
    [26]
    LIAO T, ZHANG Y, REN J, et al. Noninvasive quantification of intrarenal allograft C4d deposition with targeted ultrasound imaging[J]. Am J Transplant, 2019, 19(1): 259-268. DOI: 10.1111/ajt.15105.
    [27]
    LIAO T, LIU X, REN J, et al. Noninvasive and quantitative measurement of C4d deposition for the diagnosis of antibody-mediated cardiac allograft rejection[J]. EBioMedicine, 2018, 37: 236-245. DOI: 10.1016/j.ebiom.2018.10.061.
    [28]
    HAAS M, LOUPY A, LEFAUCHEUR C, et al. The Banff 2017 Kidney Meeting report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials[J]. Am J Transplant, 2018, 18(2): 293-307. DOI: 10.1111/ajt.14625.
    [29]
    邹孝猛, 毛盈譞, 张羽, 等. 超声靶向微泡破坏实现肿瘤递药研究进展[J]. 中国医学影像技术, 2022, 38(11): 1739-1742. DOI: 10.13929/j.issn.1003-3289.2022.11.033.

    ZOU XM, MAO YX, ZHANG Y, et al. Progresses of ultrasound targeted microbubble destruction for antineoplastic drug delivery[J]. Chin J Med Imag Technol, 2022, 38(11): 1739-1742. DOI: 10.13929/j.issn.1003-3289.2022.11.033.
    [30]
    许涛, 周畅. 靶向微泡介导超声辅助溶栓技术研究进展[J]. 实用医学杂志, 2022, 38(10): 1187-1192. DOI: 10.3969/j.issn.1006-5725.2022.10.003.

    XU T, ZHOU C. Progress in targeted microbubble mediated ultrasound assisted thrombolysis[J]. J Pract Med, 2022, 38(10): 1187-1192. DOI: 10.3969/j.issn.1006-5725.2022.10.003.
    [31]
    XIA H, YANG D, HE W, et al. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier[J]. Transl Oncol, 2021, 14(10): 101177. DOI: 10.1016/j.tranon.2021.101177.
    [32]
    LIAO T, LI Q, ZHANG Y, et al. Precise treatment of acute antibody-mediated cardiac allograft rejection in rats using C4d-targeted microbubbles loaded with nitric oxide[J]. J Heart Lung Transplant, 2020, 39(5): 481-490. DOI: 10.1016/j.healun.2020.02.002.
    [33]
    LIU J, CHEN Y, WANG G, et al. Improving acute cardiac transplantation rejection therapy using ultrasound-targeted FK506-loaded microbubbles in rats[J]. Biomater Sci, 2019, 7(9): 3729-3740. DOI: 10.1039/c9bm00301k.
    [34]
    LUO Z, JI Y, ZHOU H, et al. Galectin-7 in cardiac allografts in mice: increased expression compared with isografts and localization in infiltrating lymphocytes and vascular endothelial cells[J]. Transplant Proc, 2013, 45(2): 630-634. DOI: 10.1016/j.transproceed.2012.12.005.
    [35]
    ZLATEV I, CASTORENO A, BROWN CR, et al. Reversal of siRNA-mediated gene silencing in vivo[J]. Nat Biotechnol, 2018, 36(6): 509-511. DOI: 10.1038/nbt.4136.
    [36]
    ALSHAER W, ZUREIGAT H, AL KARAKI A, et al. siRNA: mechanism of action, challenges, and therapeutic approaches[J]. Eur J Pharmacol, 2021, 905: 174178. DOI: 10.1016/j.ejphar.2021.174178.
    [37]
    PAUNOVSKA K, LOUGHREY D, DAHLMAN JE. Drug delivery systems for RNA therapeutics[J]. Nat Rev Genet, 2022, 23(5): 265-280. DOI: 10.1038/s41576-021-00439-4.
    [38]
    WANG Z, JIANG S, LI S, et al. Targeted galectin-7 inhibition with ultrasound microbubble targeted gene therapy as a sole therapy to prevent acute rejection following heart transplantation in a rodent model[J]. Biomaterials, 2020, 263: 120366. DOI: 10.1016/j.biomaterials.2020.120366.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (202) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return