Volume 14 Issue 3
May  2023
Turn off MathJax
Article Contents
Cheng Xuechao, Song Yongxiang, Meng Hui. Research status on the role of heat shock protein in organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 455-460. doi: 10.3969/j.issn.1674-7445.2023.03.019
Citation: Cheng Xuechao, Song Yongxiang, Meng Hui. Research status on the role of heat shock protein in organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 455-460. doi: 10.3969/j.issn.1674-7445.2023.03.019

Research status on the role of heat shock protein in organ transplantation

doi: 10.3969/j.issn.1674-7445.2023.03.019
More Information
  • Corresponding author: Meng Hui, Email: mhgl2008@163.com
  • Received Date: 2022-12-29
  • Publish Date: 2023-05-15
  • Organ transplantation is an effective treatment for multiple end-stage diseases. In recent years, rapid progress has been made in the field of organ transplantation, which has been widely accepted and applied in clinical practice. However, low utilization rate of donors and high postoperative complications remain to be urgently resolved. Heat shock protein (HSP) is a category of protein family induced by heat shock or other stressors. Upon stress stimulation, HSP plays an anti-inflammation, anti-oxidation and anti-apoptosis role in mitigating the stress-induced damage. HSP is also involved in the processes of promoting immune response and anti-rejection, etc. Organ transplantation, as a stress stimulus, could induce HSP to function in the process of organ transplantation through many patterns, thereby alleviating the allograft damage, improving the utilization rate of donors and prolonging the postoperative survival of recipients. In this article, research status on the role of HSP in lung transplantation, heart transplantation, liver transplantation and kidney transplantation were reviewed, aiming to provide reference for donor protection of organ transplantation and treatment of postoperative complications.

     

  • loading
  • [1]
    YANG S, TIAN J, ZHANG F, et al. The protective effects of heat shock protein 22 in lung ischemia-reperfusion injury mice[J]. Biochem Biophys Res Commun, 2019, 512(4): 698-704. DOI: 10.1016/j.bbrc.2019.03.048.
    [2]
    MI J, YANG Y, YAO H, et al. Inhibition of heat shock protein family A member 8 attenuates spinal cord ischemia-reperfusion injury via astrocyte NF-κB/NLRP3 inflammasome pathway : HSPA8 inhibition protects spinal ischemia-reperfusion injury[J]. J Neuroinflammation, 2021, 18(1): 170. DOI: 10.1186/s12974-021-02220-0.
    [3]
    GOLMOHAMMADI MG, BANAEI S, NEJATI K, et al. Vitamin D3 and erythropoietin protect against renal ischemia-reperfusion injury via heat shock protein 70 and microRNA-21 expression[J]. Sci Rep, 2020, 10(1): 20906. DOI: 10.1038/s41598-020-78045-3.
    [4]
    RADA CC, MEJIA-PENA H, GRIMSEY NJ, et al. Heat shock protein 27 activity is linked to endothelial barrier recovery after proinflammatory GPCR-induced disruption[J]. Sci Signal, 2021, 14(698): eabc1044. DOI: 10.1126/scisignal.abc1044.
    [5]
    李玲, 徐千, 魏婉慧, 等. 脑死亡模型兔炎症因子表达和肺损伤性变化[J]. 中国组织工程研究, 2018, 22(28): 4481-4486. DOI: 10.3969/j.issn.2095-4344.0367.

    LI L, XU Q, WEI WH, et al. Lung injury and inflammatory responses in a rabbit model of brain death[J]. Chin J Tissue Eng Res, 2018, 22(28): 4481-4486. DOI: 10.3969/j.issn.2095-4344.0367.
    [6]
    ARJUNA A, OLSON MT, WALIA R, et al. An update on current treatment strategies for managing bronchiolitis obliterans syndrome after lung transplantation[J]. Expert Rev Respir Med, 2021, 15(3): 339-350. DOI: 10.1080/17476348.2021.1835475.
    [7]
    GLANVILLE AR, BENDEN C, BERGERON A, et al. Bronchiolitis obliterans syndrome after lung or haematopoietic stem cell transplantation: current management and future directions[J]. ERJ Open Res, 2022, 8(3): 00185-2022. DOI: 10.1183/23120541.00185-2022.
    [8]
    SCHIPPER HM, SONG W, TAVITIAN A, et al. The sinister face of heme oxygenase-1 in brain aging and disease[J]. Prog Neurobiol, 2019, 172: 40-70. DOI: 10.1016/j.pneurobio.2018.06.008.
    [9]
    FACCHINETTI MM. Heme-oxygenase-1[J]. Antioxid Redox Signal, 2020, 32(17): 1239-1242. DOI: 10.1089/ars.2020.8065.
    [10]
    JIANG K, CHENG L, WANG J, et al. Heme oxygenase-1 expression in rats with acute lung rejection and implication[J]. J Huazhong Univ Sci Technol Med Sci, 2009, 29(1): 84-87. DOI: 10.1007/s11596-009-0118-0.
    [11]
    BONNELL MR, VISNER GA, ZANDER DS, et al. Heme-oxygenase-1 expression correlates with severity of acute cellular rejection in lung transplantation[J]. J Am Coll Surg, 2004, 198(6): 945-952. DOI: 10.1016/j.jamcollsurg.2004.01.026.
    [12]
    林江波, 康明强, 陈道中, 等. 血红素加氧酶-1高表达对大鼠同种异体肺移植物缺血再灌注损伤的保护作用[J]. 福建医科大学学报, 2012, 46(1): 15-19. DOI: 10.3969/j.issn.1672-4194.2012.01.004.

    LIN JB, KANG MQ, CHEN DZ, et al. Endogenous heme oxygenase-1 overexpression protects rat lung allografts from ischemia reperfusion injury[J]. J Fujian Med Univ, 2012, 46(1): 15-19. DOI: 10.3969/j.issn.1672-4194.2012.01.004.
    [13]
    洪俊杰, 张振阳, 林江波, 等. 血红素加氧酶-1修饰间充质干细胞治疗肺移植缺血再灌注损伤的研究[J]. 中华实验外科杂志, 2019, 36(12): 2231-2233. DOI: 10.3760/cma.j.issn.1001-9030.2019.12.032.

    HONG JJ, ZHANG ZY, LIN JB, et al. Heme oxygenase-1 modified mesenchymal stem cells in the treatment of ischemia-reperfusion injury in lung transplantation[J]. Chin J Exp Surg, 2019, 36(12): 2231-2233. DOI: 10.3760/cma.j.issn.1001-9030.2019.12.032.
    [14]
    SUN X, SIRI S, HURST A, et al. Heat shock protein 22 in physiological and pathological hearts: small molecule, large potentials[J]. Cells, 2021, 11(1): 114. DOI: 10.3390/cells11010114.
    [15]
    成纯伟, 管斌. 热休克蛋白22在临床相关疾病中作用的研究进展[J]. 现代医院, 2022, 22(5): 796-799. DOI: 10.3969/j.issn.1671-332X.2022.05.041.

    CHENG CW, GUAN B. Role of heat shock protein 22 in clinical diseases: a literature review[J]. Mod Hosp, 2022, 22(5): 796-799. DOI: 10.3969/j.issn.1671-332X.2022.05.041.
    [16]
    LIU S, XU J, FANG C, et al. Over-expression of heat shock protein 70 protects mice against lung ischemia/reperfusion injury through SIRT1/AMPK/eNOS pathway[J]. Am J Transl Res, 2016, 8(10): 4394-4404.
    [17]
    MARTÍNEZ-LAORDEN E, NAVARRO-ZARAGOZA J, MILANÉS MV, et al. Cardiac protective role of heat shock protein 27 in the stress induced by drugs of abuse[J]. Int J Mol Sci, 2020, 21(10): 3623. DOI: 10.3390/ijms21103623.
    [18]
    POBER JS, CHIH S, KOBASHIGAWA J, et al. Cardiac allograft vasculopathy: current review and future research directions[J]. Cardiovasc Res, 2021, 117(13): 2624-2638. DOI: 10.1093/cvr/cvab259.
    [19]
    HAMS A, BELL N, JONES T. Evaluating the impact of a regional student-led physiotherapy clinic model to improve self-reported function in community-dwelling adults with neurological diagnoses[J]. J Neurol Phys Ther, 2022, 46(3): 206-212. DOI: 10.1097/NPT.0000000000000399.
    [20]
    JING H, ZOU G, HAO F, et al. HSP27 reduces cold ischemia-reperfusion injury in heart transplantation through regulation of NF-κB and PUMA signaling[J]. Int J Clin Exp Pathol, 2018, 11(1): 281-292.
    [21]
    HAUSENLOY DJ, SCHULZ R, GIRAO H, et al. Mitochondrial ion channels as targets for cardioprotection[J]. J Cell Mol Med, 2020, 24(13): 7102-7114. DOI: 10.1111/jcmm.15341.
    [22]
    ACEROS H, DER SARKISSIAN S, BORIE M, et al. Novel heat shock protein 90 inhibitor improves cardiac recovery in a rodent model of donation after circulatory death[J]. J Thorac Cardiovasc Surg, 2022, 163(2): e187-e197. DOI: 10.1016/j.jtcvs.2020.03.042.
    [23]
    MAEHANA T, TANAKA T, HASHIMOTO K, et al. Heat shock protein 90 is a new potential target of anti-rejection therapy in allotransplantation[J]. Cell Stress Chaperones, 2022, 27(4): 337-351. DOI: 10.1007/s12192-022-01272-2.
    [24]
    SONG YJ, ZHONG CB, WANG XB. Heat shock protein 70: a promising therapeutic target for myocardial ischemia-reperfusion injury[J]. J Cell Physiol, 2019, 234(2): 1190-1207. DOI: 10.1002/jcp.27110.
    [25]
    HIRAO H, DERY KJ, KAGEYAMA S, et al. Heme oxygenase-1 in liver transplant ischemia-reperfusion injury: from bench-to-bedside[J]. Free Radic Biol Med, 2020, 157: 75-82. DOI: 10.1016/j.freeradbiomed.2020.02.012.
    [26]
    SOLOMON M, GRASEMANN H, KESHAVJEE S. Pediatric lung transplantation[J]. Pediatr Clin North Am, 2010, 57(2): 375-391, table of contents. DOI: 10.1016/j.pcl.2010.01.017.
    [27]
    GALLOWAY E, SHIN T, HUBER N, et al. Activation of hepatocytes by extracellular heat shock protein 72[J]. Am J Physiol Cell Physiol, 2008, 295(2): C514-C520. DOI: 10.1152/ajpcell.00032.2008.
    [28]
    FAYBIK P, WACHAUER D, HETZ H, et al. Perioperative kinetics of heat shock protein 60 in serum during orthotopic liver transplantation[J]. Transplant Proc, 2004, 36(5): 1469-1472. DOI: 10.1016/j.transproceed.2004.05.033.
    [29]
    QIAO Y, ZHANG X, ZHAO G, et al. Hepatocellular iNOS protects liver from ischemia/reperfusion injury through HSF1-dependent activation of HSP70[J]. Biochem Biophys Res Commun, 2019, 512(4): 882-888. DOI: 10.1016/j.bbrc.2019.03.133.
    [30]
    WU HH, HUANG CC, CHANG CP, et al. Heat shock protein 70 (HSP70) reduces hepatic inflammatory and oxidative damage in a rat model of liver ischemia/reperfusion injury with hyperbaric oxygen preconditioning[J]. Med Sci Monit, 2018, 24: 8096-8104. DOI: 10.12659/MSM.911641.
    [31]
    TASHIRO S, MIYAKE H, ROKUTAN K. Role of geranylgeranylacetone as non-toxic HSP70 inducer in liver surgery: clinical application[J]. J Hepatobiliary Pancreat Sci, 2018, 25(5): 269-274. DOI: 10.1002/jhbp.549.
    [32]
    HOTER A, EL-SABBAN ME, NAIM HY. The HSP90 family: structure, regulation, function, and implications in health and disease[J]. Int J Mol Sci, 2018, 19(9): 2560. DOI: 10.3390/ijms19092560.
    [33]
    MAITI S, PICARD D. Cytosolic HSP90 isoform-specific functions and clinical significance[J]. Biomolecules, 2022, 12(9): 1166. DOI: 10.3390/biom12091166.
    [34]
    CALDAS C, LUNA E, SPADAFORA-FERREIRA M, et al. Cellular autoreactivity against heat shock protein 60 in renal transplant patients: peripheral and graft-infiltrating responses[J]. Clin Exp Immunol, 2006, 146(1): 66-75. DOI: 10.1111/j.1365-2249.2006.03195.x.
    [35]
    GRANJA C, MOLITERNO RA, FERREIRA MS, et al. T-cell autoreactivity to HSP in human transplantation may involve both proinflammatory and regulatory functions[J]. Hum Immunol, 2004, 65(2): 124-134. DOI: 10.1016/j.humimm.2003.10.007.
    [36]
    KONGTASAI T, PAEPE D, MEYER E, et al. Renal biomarkers in cats: a review of the current status in chronic kidney disease[J]. J Vet Intern Med, 2022, 36(2): 379-396. DOI: 10.1111/jvim.16377.
    [37]
    HOSSAIN MA, DE SOUZA AI, BAGUL A, et al. HSP70, peroxiredoxin-3 and -6 are upregulated during renal warm ischaemia in a donation after circulatory death model[J]. J Proteomics, 2014, 108: 133-145. DOI: 10.1016/j.jprot.2014.05.008.
    [38]
    ZANIERATO M, DONDOSSOLA D, PALLESCHI A, et al. Donation after circulatory death: possible strategies for in-situ organ preservation[J]. Minerva Anestesiol, 2020, 86(9): 984-991. DOI: 10.23736/S0375-9393.20.14262-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (167) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return