Volume 14 Issue 3
May  2023
Turn off MathJax
Article Contents
Yang Hanwen, Wang Qiang, Cheng Ke, et al. Research progress on cold ischemia injury of steatotic donor livers[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 449-454. doi: 10.3969/j.issn.1674-7445.2023.03.018
Citation: Yang Hanwen, Wang Qiang, Cheng Ke, et al. Research progress on cold ischemia injury of steatotic donor livers[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 449-454. doi: 10.3969/j.issn.1674-7445.2023.03.018

Research progress on cold ischemia injury of steatotic donor livers

doi: 10.3969/j.issn.1674-7445.2023.03.018
More Information
  • Corresponding author: Zhao Yujun, Email: zyjdoc@aliyun.com
  • Received Date: 2022-11-20
  • Publish Date: 2023-05-15
  • Liver transplantation is a vital treatment for end-stage liver disease. However, the shortage of donor livers has limited the development of liver transplantation. How to expand the source of donor livers has become a challenge in the academic community. In recent years, the proportion of donors with non-alcoholic fatty liver disease (NAFLD) has been increased. Rational use of steatotic donor livers is a feasible approach to expand the donor pool. Cold ischemia injury during donor liver preservation before liver transplantation increases the risk of postoperative organ dysfunction. Therefore, it is of significance to unravel the mechanism and intervention measures of cold ischemia injury of steatotic donor livers. Cold ischemia injury of steatotic donor livers is characterized as the damage of mitochondria, lysosomes and endoplasmic reticulum at the organelle level, and up-regulated expression of adenosine monphosphate activated protein kinase (AMPK), aldehyde dehydrogenase 2 (ALDH2) and heme oxygenase (HO)-1 at the protein level. In this article, the research progresses on cold ischemia injury of steatotic donor livers and relevant intervention measures were reviewed.

     

  • loading
  • [1]
    WESTERKAMP AC, FUJIYOSHI M, OTTENS PJ, et al. Metformin preconditioning improves hepatobiliary function and reduces injury in a rat model of normothermic machine perfusion and orthotopic transplantation[J]. Transplantation, 2020, 104(9): e271-e280. DOI: 10.1097/TP.0000000000003216.
    [2]
    代星, 高犇, 李江. 改善脂肪肝移植受者预后的研究进展[J]. 临床肝胆病杂志, 2021, 37(12): 2967-2971. DOI: 10.3969/j.issn.1001-5256.2021.12.049.

    DAI X, GAO B, LI J. Research advances in improving the prognosis of recipients of fatty liver transplantation[J]. J Clin Hepatol, 2021, 37(12): 2967-2971. DOI: 10.3969/j.issn.1001-5256.2021.12.049.
    [3]
    张强, 刘勤, 牛春燕. 利拉鲁肽减轻脂毒性肝细胞损伤并促进自噬改善非酒精性脂肪肝[J]. 中华肝脏病杂志, 2021, 29(5): 456-461. DOI: 10.3760/cma.j.cn501113-20200427-00219.

    ZHANG Q, LIU Q, NIU CY. Liraglutide alleviates lipotoxic liver cell damage and promotes autophagy to improve non-alcoholic fatty liver[J]. Chin J Hepatol, 2021, 29(5): 456-461. DOI: 10.3760/cma.j.cn501113-20200427-00219.
    [4]
    杨梦凡, 王睿, 潘斌华, 等. 脂肪变性供肝用于肝癌肝移植的预后及影响因素多中心研究[J]. 中华消化外科杂志, 2022, 21(2): 237-248. DOI: 10.3760/cma.j.cn115610-20220209-00072.

    YANG MF, WANG R, PAN BH, et al. Prognosis and influencing factors of liver transplantation for hepatocellular carcinoma using steatotic donor liver: a multicenter study[J]. Chin J Dig Surg, 2022, 21(2): 237-248. DOI: 10.3760/cma.j.cn115610-20220209-00072.
    [5]
    MAJUMDAR A, TSOCHATZIS EA. Changing trends of liver transplantation and mortality from non-alcoholic fatty liver disease[J]. Metabolism, 2020, 111S: 154291. DOI: 10.1016/j.metabol.2020.154291.
    [6]
    ZHU L, MU J, WU Y, et al. Role of HIF-1α in cold ischemia injury of rat donor heart via the miR-21/PDCD4 pathway[J]. Transplant Proc, 2020, 52(1): 383-391. DOI: 10.1016/j.transproceed.2019.11.001.
    [7]
    LARGE S, MESSER S. Intra-corporeal recovery of the donor heart after circulatory-determined death followed by cold storage in clinical practice[J]. Eur J Cardiothorac Surg, 2021, 60(4): 820-821. DOI: 10.1093/ejcts/ezab360.
    [8]
    YOUNG LAJ, CERESA CDL, MÓZES FE, et al. Noninvasive assessment of steatosis and viability of cold-stored human liver grafts by MRI[J]. Magn Reson Med, 2021, 86(6): 3246-3258. DOI: 10.1002/mrm.28930.
    [9]
    HAMAMOTO I, NEMOTO EM, ZHANG S, et al. Assessment of hepatic viability during cold ischemic preservation[J]. Transpl Int, 1995, 8(6): 434-439. DOI: 10.1007/BF00335594.
    [10]
    CARDINI B, FODOR M, HERMANN M, et al. Live confocal imaging as a novel tool to assess liver quality: insights from a murine model[J]. Transplantation, 2020, 104(12): 2528-2537. DOI: 10.1097/TP.0000000000003405.
    [11]
    MCKAY FLETCHER DM, SHAW R, SÁNCHEZ-RODRÍGUEZ AR, et al. Quantifying citrate-enhanced phosphate root uptake using microdialysis[J]. Plant Soil, 2021, 461(1/2): 69-89. DOI: 10.1007/s11104-019-04376-4.
    [12]
    KIM S, JANG EY, SONG SH, et al. Brain microdialysis coupled to LC-MS/MS revealed that CVT-10216, a selective inhibitor of aldehyde dehydrogenase 2, alters the neurochemical and behavioral effects of methamphetamine[J]. ACS Chem Neurosci, 2021, 12(9): 1552-1562. DOI: 10.1021/acschemneuro.1c00039.
    [13]
    王进, 王丹, 郇传胜, 等. 脂肪肝大鼠肝脏缺血损伤后透析液葡萄糖、乳酸、丙酮酸、甘油水平变化及意义[J]. 山东医药, 2019, 59(35): 24-28. DOI: 10.3969/j.issn.1002-266X.2019.35.006.

    WANG J, WANG D, HUAN CS, et al. Changes in levels of serum glucose, lactate, pyruvate and glycerol of steatotic liver rats after hepatic ischemic injury[J]. Shandong Med J, 2019, 59(35): 24-28. DOI: 10.3969/j.issn.1002-266X.2019.35.006.
    [14]
    CHENG N, SHI JH, JIN Y, et al. Pharmacological activating transcription factor 6 activation is beneficial for liver retrieval with ex vivo normothermic mechanical perfusion from cardiac dead donor rats[J]. Front Surg, 2021, 8: 665260. DOI: 10.3389/fsurg.2021.665260.
    [15]
    CERESA CDL, NASRALLA D, POLLOK JM, et al. Machine perfusion of the liver: applications in transplantation and beyond[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(3): 199-209. DOI: 10.1038/s41575-021-00557-8.
    [16]
    KARANGWA S, PANAYOTOVA G, DUTKOWSKI P, et al. Hypothermic machine perfusion in liver transplantation[J]. Int J Surg, 2020, 82S: 44-51. DOI: 10.1016/j.ijsu.2020.04.057.
    [17]
    TATSIS V, DOUNOUSI E, MITSIS M. Hypothermic machine perfusion of kidney transplant: a mini-review[J]. Transplant Proc, 2021, 53(9): 2793-2796. DOI: 10.1016/j.transproceed.2021.09.011.
    [18]
    WANG S, ZENG X, YANG Y, et al. Hypothermic oxygenated perfusion ameliorates ischemia-reperfusion injury of fatty liver in mice via Brg1/Nrf2/HO-1 axis[J]. Artif Organs, 2022, 46(2): 229-238. DOI: 10.1111/aor.14076.
    [19]
    TANEJA C, PRESCOTT L, KONERU B. Critical preservation injury in rat fatty liver is to hepatocytes, not sinusoidal lining cells[J]. Transplantation, 1998, 65(2): 167-172. DOI: 10.1097/00007890-199801270-00004.
    [20]
    TOLBA RH, PÜTZ U, DECKER D, et al. L-carnitine ameliorates abnormal vulnerability of steatotic rat livers to cold ischemic preservation[J]. Transplantation, 2003, 76(12): 1681-1686. DOI: 10.1097/01.TP.0000093832.15249.AD.
    [21]
    CHU MJ, HICKEY AJ, JIANG Y, et al. Mitochondrial dysfunction in steatotic rat livers occurs because a defect in complex i makes the liver susceptible to prolonged cold ischemia[J]. Liver Transpl, 2015, 21(3): 396-407. DOI: 10.1002/lt.24024.
    [22]
    CHU MJ, HICKEY AJ, TAGALOA S, et al. Ob/ob mouse livers show decreased oxidative phosphorylation efficiencies and anaerobic capacities after cold ischemia[J]. PLoS One, 2014, 9(6): e100609. DOI: 10.1371/journal.pone.0100609.
    [23]
    ABUDHAISE H, TAANMAN JW, DEMUYLDER P, et al. Mitochondrial respiratory chain and Krebs cycle enzyme function in human donor livers subjected to end-ischaemic hypothermic machine perfusion[J]. PLoS One, 2021, 16(10): e0257783. DOI: 10.1371/journal.pone.0257783.
    [24]
    MINOR T, STEGEMANN J, HIRNER A, et al. Impaired autophagic clearance after cold preservation of fatty livers correlates with tissue necrosis upon reperfusion and is reversed by hypothermic reconditioning[J]. Liver Transpl, 2009, 15(7): 798-805. DOI: 10.1002/lt.21751.
    [25]
    SHI Q, SHEN Q, LIU Y, et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance[J]. Cancer Cell, 2022, 40(10): 1207-1222. DOI: 10.1016/j.ccell.2022.08.012.
    [26]
    SLADE L, BISWAS D, IHIONU F, et al. A lysosome independent role for TFEB in activating DNA repair and inhibiting apoptosis in breast cancer cells[J]. Biochem J, 2020, 477(1): 137-160. DOI: 10.1042/BCJ20190596.
    [27]
    GUICCIARDI ME, MIYOSHI H, BRONK SF, et al. Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications[J]. Am J Pathol, 2001, 159(6): 2045-2054. DOI: 10.1016/s0002-9440(10)63056-8.
    [28]
    CHEN J, TANG YX, KANG JX, et al. Astragalus polysaccharide alleviates transport stress-induced heart injury in newly hatched chicks via ERS-UPR-autophagy dependent pathway[J]. Poult Sci, 2022, 101(9): 102030. DOI: 10.1016/j.psj.2022.102030.
    [29]
    NOURI H, SHEIKHOLESLAMI-VATANI D, MOLOUDI MR. Changes in UPR-PERK pathway and muscle hypertrophy following resistance training and creatine supplementation in rats[J]. J Physiol Biochem, 2021, 77(2): 331-339. DOI: 10.1007/s13105-021-00801-4.
    [30]
    VARIŞLI B, CAGLAYAN C, KANDEMIR FM, et al. The impact of Nrf2/HO-1, caspase-3/Bax/Bcl2 and ATF6/IRE1/PERK/GRP78 signaling pathways in the ameliorative effects of morin against methotrexate-induced testicular toxicity in rats[J]. Mol Biol Rep, 2022, 49(10): 9641-9649. DOI: 10.1007/s11033-022-07873-5.
    [31]
    PARK J, CHO J, SONG EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-1161. DOI: 10.1007/s12272-020-01281-8.
    [32]
    FOLCH-PUY E, PANISELLO A, OLIVA J, et al. Relevance of endoplasmic reticulum stress cell signaling in liver cold ischemia reperfusion injury[J]. Int J Mol Sci, 2016, 17(6): 807. DOI: 10.3390/ijms17060807.
    [33]
    GARCIA D, SHAW RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Mol Cell, 2017, 66(6): 789-800. DOI: 10.1016/j.molcel.2017.05.032.
    [34]
    PANISELLO-ROSELLÓ A, VERDE E, AMINE ZAOUALI M, et al. The relevance of the UPS in fatty liver graft preservation: a new approach for IGL-1 and HTK solutions[J]. Int J Mol Sci, 2017, 18(11): 2287. DOI: 10.3390/ijms18112287.
    [35]
    ZAOUALI MA, BARDAG-GORCE F, CARBONELL T, et al. Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury[J]. Exp Mol Pathol, 2013, 94(2): 352-359. DOI: 10.1016/j.yexmp.2012.12.005.
    [36]
    ZAOUALI MA, BONCOMPAGNI E, REITER RJ, et al. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail[J]. J Pineal Res, 2013, 55(1): 65-78. DOI: 10.1111/jpi.12051.
    [37]
    BEN MOSBAH I, ROSELLÓ-CATAFAU J, ALFANY-FERNANDEZ I, et al. Addition of carvedilol to University Wisconsin solution improves rat steatotic and nonsteatotic liver preservation[J]. Liver Transpl, 2010, 16(2): 163-171. DOI: 10.1002/lt.21968.
    [38]
    SUPURAN CT. Carbonic anhydrases-an overview[J]. Curr Pharm Des, 2008, 14(7): 603-614. DOI: 10.2174/138161208783877884.
    [39]
    BEJAOUI M, PANTAZI E, DE LUCA V, et al. Carbonic anhydrase protects fatty liver grafts against ischemic reperfusion damage[J]. PLoS One, 2015, 10(7): e0134499. DOI: 10.1371/journal.pone.0134499.
    [40]
    BEJAOUI M, PANTAZI E, DE LUCA V, et al. Acetazolamide protects steatotic liver grafts against cold ischemia reperfusion injury[J]. J Pharmacol Exp Ther, 2015, 355(2): 191-198. DOI: 10.1124/jpet.115.225177.
    [41]
    CHEN CH, FERREIRA JC, GROSS ER, et al. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities[J]. Physiol Rev, 2014, 94(1): 1-34. DOI: 10.1152/physrev.00017.2013.
    [42]
    PANISELLO-ROSELLÓ A, ALVA N, FLORES M, et al. Aldehyde dehydrogenase 2 (ALDH2) in rat fatty liver cold ischemia injury[J]. Int J Mol Sci, 2018, 19(9): 2479. DOI: 10.3390/ijms19092479.
    [43]
    BARDALLO RG, COMPANY-MARIN I, FOLCH-PUY E, et al. PEG35 and glutathione improve mitochondrial function and reduce oxidative stress in cold fatty liver graft preservation[J]. Antioxidants (Basel), 2022, 11(1): 158. DOI: 10.3390/antiox11010158.
    [44]
    MAINES MD. New developments in the regulation of heme metabolism and their implications[J]. Crit Rev Toxicol, 1984, 12(3): 241-314. DOI: 10.3109/10408448409021604.
    [45]
    NAITO Y, TAKAGI T, HIGASHIMURA Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages[J]. Arch Biochem Biophys, 2014, 564: 83-88. DOI: 10.1016/j.abb.2014.09.005.
    [46]
    KIM SJ, PARK JG, LEE SM. Protective effect of heme oxygenase-1 induction against hepatic injury in alcoholic steatotic liver exposed to cold ischemia/reperfusion[J]. Life Sci, 2012, 90(5/6): 169-176. DOI: 10.1016/j.lfs.2011.10.003.
    [47]
    ZAOUALÍ MA, REITER RJ, PADRISSA-ALTÉS S, et al. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury[J]. J Pineal Res, 2011, 50(2): 213-221. DOI: 10.1111/j.1600-079X.2010.00831.x.
    [48]
    ZAOUALÍ MA, PANISELLO A, LOPEZ A, et al. Cross-talk between sirtuin 1 and high-mobility box 1 in steatotic liver graft preservation[J]. Transplant Proc, 2017, 49(4): 765-769. DOI: 10.1016/j.transproceed.2017.01.071.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (214) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return