Volume 14 Issue 3
May  2023
Turn off MathJax
Article Contents
Deng Jintao, Xu Wenbin, Ren Jianhua, et al. Mechanism of regulatory effect of recombinant human HMGB1 on endothelial cell angiogenesis[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 397-403. doi: 10.3969/j.issn.1674-7445.2023.03.011
Citation: Deng Jintao, Xu Wenbin, Ren Jianhua, et al. Mechanism of regulatory effect of recombinant human HMGB1 on endothelial cell angiogenesis[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 397-403. doi: 10.3969/j.issn.1674-7445.2023.03.011

Mechanism of regulatory effect of recombinant human HMGB1 on endothelial cell angiogenesis

doi: 10.3969/j.issn.1674-7445.2023.03.011
More Information
  •   Objective  To unravel the possible mechanism of the role of recombinant human high mobility group box 1 (rhHMGB1) protein in regulating the angiogenesis of endothelial cells.  Methods  Endothelial cells were divided into the control group, bone marrow mesenchymal stem cells (MSC) supernatant group and rhHMGB1 group. The proliferation and survival of endothelial cells were detected by cell counting kit(CCK)-8 assay. The relative expression levels of vascular endothelial growth factor (VEGF), Yes-associated protein (YAP), CD31 and hypoxia inducible factor (HIF)-1α proteins were determined by Western blot. The relative expression levels of VEGF, YAP, CD31 and HIF-1α messenger RNA (mRNA) were detected by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). The migration ability of endothelial cells was assessed by Transwell chamber test. The localization of YAP was detected by immunofluorescence staining.  Results  Compared with the control group, the migration rate of endothelial cells was increased in the rhHMGB1 group (P < 0.05), and the cell migration rate was enhanced over time. Compared with the control group, the relative expression levels of VEGF and p-YAP proteins were up-regulated in the MSC supernatant group, and the differences were statistically significant (both P < 0.05). Compared with the control group, the relative expression levels of VEGF and HIF-1α proteins, VEGF and CD31 mRNA and YAP and p-YAP proteins were up-regulated, and YAP/p-YAP ratio was increased in the rhHMGB1 group, and the differences were statistically significant (all P < 0.05). Compared with the MSC supernatant group, the relative expression levels of CD31 mRNA and YAP protein were up-regulated, and the YAP/p-YAP ratio was increased in the rhHMGB1 group, and the differences were statistically significant (all P < 0.05).  Conclusions  Exogenous high-concentration rhHMGB1 may promote the migration ability of endothelial cells and up-regulate the expression levels of angiogenesis-related proteins by regulating the recruitment of YAP to the nucleus.

     

  • loading
  • [1]
    KÉROURÉDAN O, HAKOBYAN D, RÉMY M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration[J]. Biofabrication, 2019, 11(4): 045002. DOI: 10.1088/1758-5090/ab2620.
    [2]
    蔡元庆, 刘谟震, 李忠海. 同种异体骨移植材料在脊柱融合中的应用[J]. 中国组织工程研究, 2023, 27(16): 2571-2579. DOI: 10.12307/2023.139.

    CAI YQ, LIU MZ, LI ZH. Application of allograft bone materials in spinal fusion[J]. Chin J Tissue Eng Res, 2023, 27(16): 2571-2579. DOI: 10.12307/2023.139.
    [3]
    GORSKI SM, DONG C, KRIEG AH, et al. Vascularized bone graft reconstruction following bone tumor resection at a multidisciplinary sarcoma center: outcome analysis[J]. Anticancer Res, 2021, 41(10): 5015-5023. DOI: 10.21873/anticanres.15316.
    [4]
    SCHULZE F, LANG A, SCHOON J, et al. Scaffold guided bone regeneration for the treatment of large segmental defects in long bones[J]. Biomedicines, 2023, 11(2): 325. DOI: 10.3390/biomedicines11020325.
    [5]
    齐军强, 郭超, 牛东阳, 等. 金属离子掺杂羟基磷灰石骨修复材料的特性及应用[J]. 中国组织工程研究, 2023, 27(21): 3415-3422. DOI: 10.12307/2023.179.

    QI JQ, GUO C, NIU DY, et al. Characteristics and application of bone repair materials of metal ion doped hydroxyapatite[J]. Chin J Tissue Eng Res, 2023, 27(21): 3415-3422. DOI: 10.12307/2023.179.
    [6]
    VALTANEN RS, YANG YP, GURTNER GC, et al. Synthetic and bone tissue engineering graft substitutes: what is the future?[J]. Injury, 2021, 52 (Suppl 2): S72-S77. DOI: 10.1016/j.injury.2020.07.040.
    [7]
    MARUYAMA M, PAN CC, MOEINZADEH S, et al. Effect of porosity of a functionally-graded scaffold for the treatment of corticosteroid-associated osteonecrosis of the femoral head in rabbits[J]. J Orthop Translat, 2021, 28: 90-99. DOI: 10.1016/j.jot.2021.01.002.
    [8]
    张春雨, 胡宝阳, 冯瑶, 等. 与骨缺损区域骨组织再生相匹配的新型硅酸钙(基)支架的性能优化[J]. 中国组织工程研究, 2022, 26(21): 3421-3428. DOI: 10.12307/2022.654.

    ZHANG CY, HU BY, FENG Y, et al. Performance optimization of a new type of calcium silicate (based) scaffold matched with bone tissue regeneration in the bone defect area[J]. Chin J Tissue Eng Res, 2022, 26(21): 3421-3428. DOI: 10.12307/2022.654.
    [9]
    KONDA SR, LITTLEFIELD CP, CARLOCK KD, et al. Autogenous iliac crest bone grafting for tibial nonunions revisited: does approach matter?[J]. Arch Orthop Trauma Surg, 2022, 142(6): 961-968. DOI: 10.1007/s00402-020-03735-6.
    [10]
    CHEAH CW, AL-NAMNAM NM, LAU MN, et al. Synthetic material for bone, periodontal, and dental tissue regeneration: where are we now, and where are we heading next?[J]. Materials (Basel), 2021, 14(20): 6123. DOI: 10.3390/ma14206123.
    [11]
    HOU X, ZHANG L, ZHOU Z, et al. Calcium phosphate-based biomaterials for bone repair[J]. J Funct Biomater, 2022, 13(4): 187. DOI: 10.3390/jfb13040187.
    [12]
    丁育健, 冯德宏, 王凌, 等. 髋关节翻修术中应用数字设计3D打印定制带翼臼杯重建髋臼严重骨缺损[J]. 中华骨科杂志, 2023, 43(2): 97-103. DOI: 10.3760/cma.j.cn121113-20220929-00588.

    DING YJ, FENG DH, WANG L, et al. Digital design and 3D-printed customized flanged cups in hip revision with severe acetabular bone defects[J]. Chin J Orthop, 2023, 43(2): 97-103. DOI: 10.3760/cma.j.cn121113-20220929-00588.
    [13]
    PELLEGRINI L, FOGLIO E, PONTEMEZZO E, et al. HMGB1 and repair: focus on the heart[J]. Pharmacol Ther, 2019, 196: 160-182. DOI: 10.1016/j.pharmthera.2018.12.005.
    [14]
    ANDERSSON U, TRACEY KJ, YANG H. Post-translational modification of HMGB1 disulfide bonds in stimulating and inhibiting inflammation[J]. Cells, 2021, 10(12): 3323. DOI: 10.3390/cells10123323.
    [15]
    BELMADANI S, MATROUGUI K. Role of high mobility group box 1 in cardiovascular diseases[J]. Inflammation, 2022, 45(5): 1864-1874. DOI: 10.1007/s10753-022-01668-3.
    [16]
    CHEN R, KANG R, TANG D. The mechanism of HMGB1 secretion and release[J]. Exp Mol Med, 2022, 54(2): 91-102. DOI: 10.1038/s12276-022-00736-w.
    [17]
    LIN F, ZHANG W, XUE D, et al. Signaling pathways involved in the effects of HMGB1 on mesenchymal stem cell migration and osteoblastic differentiation[J]. Int J Mol Med, 2016, 37(3): 789-797. DOI: 10.3892/ijmm.2016.2479.
    [18]
    LO SARDO F, CANU V, MAUGERI-SACCÀ M, et al. YAP and TAZ: monocorial and bicorial transcriptional co-activators in human cancers[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(4): 188756. DOI: 10.1016/j.bbcan.2022.188756.
    [19]
    PIBIRI M, SIMBULA G. Role of the Hippo pathway in liver regeneration and repair: recent advances[J]. Inflamm Regen, 2022, 42(1): 59. DOI: 10.1186/s41232-022-00235-5.
    [20]
    MOYA IM, HALDER G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 211-226. DOI: 10.1038/s41580-018-0086-y.
    [21]
    奚小荔, 周浩雄, 杨碧兰, 等. LRRC1通过DLG1/YAP信号通路促进肝癌细胞增殖的研究[J]. 新医学, 2021, 52(4): 272-277. DOI: 10.3969/j.issn.0253-9802.2021.04.009.

    XI XL, ZHOU HX, YANG BL, et al. LRRC1 promotes proliferation of hepatocellular carcinoma cells via DLG1/YAP signaling pathway[J]. New Med, 2021, 52(4): 272-277. DOI: 10.3969/j.issn.0253-9802.2021.04.009.
    [22]
    LEE HJ, HONG YJ, KIM M. Angiogenesis in chronic inflammatory skin disorders[J]. Int J Mol Sci, 2021, 22(21): 12035. DOI: 10.3390/ijms222112035.
    [23]
    DAMKHAM N, ISSARAGRISIL S, LORTHONGPANICH C. Role of YAP as a mechanosensing molecule in stem cells and stem cell-derived hematopoietic cells[J]. Int J Mol Sci, 2022, 23(23): 14634. DOI: 10.3390/ijms232314634.
    [24]
    NAZEER MA, KARAOGLU IC, OZER O, et al. Neovascularization of engineered tissues for clinical translation: where we are, where we should be?[J]. APL Bioeng, 2021, 5(2): 021503. DOI: 10.1063/5.0044027.
    [25]
    HE Y, WANG W, LIN S, et al. Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation[J]. Bioact Mater, 2021, 9: 491-507. DOI: 10.1016/j.bioactmat.2021.07.030.
    [26]
    KIM HJ, YOU SJ, YANG DH, et al. Injectable hydrogels based on MPEG-PCL-RGD and BMSCs for bone tissue engineering[J]. Biomater Sci, 2020, 8(15): 4334-4345. DOI: 10.1039/d0bm00588f.
    [27]
    ZHANG Y, REN H, LI J, et al. Elevated HMGB1 expression induced by hepatitis B virus X protein promotes epithelial-mesenchymal transition and angiogenesis through STAT3/miR-34a/NF-κB in primary liver cancer[J]. Am J Cancer Res, 2021, 11(2): 479-494.
    [28]
    QIN Q, LIU Y, YANG Z, et al. Hypoxia-inducible factors signaling in osteogenesis and skeletal repair[J]. Int J Mol Sci, 2022, 23(19): 11201. DOI: 10.3390/ijms231911201.
    [29]
    YANG Z, HUANG Y, ZHU L, et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species[J]. Cell Death Dis, 2021, 12(1): 77. DOI: 10.1038/s41419-020-03372-2.
    [30]
    ZHANG J, QIN Y, MARTINEZ M, et al. HIF-1α and HIF-2α redundantly promote retinal neovascularization in patients with ischemic retinal disease[J]. J Clin Invest, 2021, 131(12): e139202. DOI: 10.1172/JCI139202.
    [31]
    LUO Y, YANG Z, YU Y, et al. HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer[J]. Int J Biol Macromol, 2022, 222(Pt B): 2225-2243. DOI: 10.1016/j.ijbiomac.2022.10.014.
    [32]
    LIU J, KANG H, LU J, et al. Experimental study of the effects of hypoxia simulator on osteointegration of titanium prosthesis in osteoporotic rats[J]. BMC Musculoskelet Disord, 2021, 22(1): 944. DOI: 10.1186/s12891-021-04777-6.
    [33]
    CHEN W, WU P, YU F, et al. HIF-1α regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases[J]. Cells, 2022, 11(22): 3552. DOI: 10.3390/cells11223552.
    [34]
    LEE JS, CHO HG, RYU JY, et al. Hypoxia promotes angiogenic effect in extracranial arteriovenous malformation endothelial cells[J]. Int J Mol Sci, 2022, 23(16): 9109. DOI: 10.3390/ijms23169109.
    [35]
    GUREVICH DB, DAVID DT, SUNDARARAMAN A, et al. Endothelial heterogeneity in development and wound healing[J]. Cells, 2021, 10(9) : 2338. DOI: 10.3390/cells10092338.
    [36]
    YADUNANDANAN NAIR N, SAMUEL V, RAMESH L, et al. Actin cytoskeleton in angiogenesis[J]. Biol Open, 2022, 11(12) : bio058899. DOI: 10.1242/bio.058899.
    [37]
    HENG BC, ZHANG X, AUBEL D, et al. An overview of signaling pathways regulating YAP/TAZ activity[J]. Cell Mol Life Sci, 2021, 78(2): 497-512. DOI: 10.1007/s00018-020-03579-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (373) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return