Volume 14 Issue 3
May  2023
Turn off MathJax
Article Contents
Ren Difei, Liao Tao, Miao Yun. Research progress on the role of macrophages in post-transplantation chronic rejection[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 358-363. doi: 10.3969/j.issn.1674-7445.2023.03.006
Citation: Ren Difei, Liao Tao, Miao Yun. Research progress on the role of macrophages in post-transplantation chronic rejection[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 358-363. doi: 10.3969/j.issn.1674-7445.2023.03.006

Research progress on the role of macrophages in post-transplantation chronic rejection

doi: 10.3969/j.issn.1674-7445.2023.03.006
More Information
  • Corresponding author: Miao Yun, Email: miaoyunecho@126.com
  • Received Date: 2022-12-04
  • Publish Date: 2023-05-15
  • Organ transplantation is the optimal treatment for end-stage organ failure. Nevertheless, rejection remains an important factor affecting the allograft survival. At present, acute rejection may be effectively treated, whereas no effective interventions are available for post-transplantation chronic rejection. Long-term chronic rejection may lead to graft failure and severely affect long-term survival rate of allografts. In recent years, the role of macrophages in post-transplantation chronic rejection has gradually captivated increasing attention. In this article, main pathological changes of chronic rejection, the diversity and functional differences of macrophages involved in chronic rejection, and the role and mechanism of macrophages in chronic rejection were reviewed, and research progresses on macrophage-related treatment for chronic rejection were summarized, aiming to provide reference for the study of macrophages in post-transplantation chronic rejection.

     

  • loading
  • [1]
    VASCO M, BENINCASA G, FIORITO C, et al. Clinical epigenetics and acute/chronic rejection in solid organ transplantation: an update[J]. Transplant Rev (Orlando), 2021, 35(2): 100609. DOI: 10.1016/j.trre.2021.100609.
    [2]
    ZHANG H, LI Z, LI W. M2 macrophages serve as critical executor of innate immunity in chronic allograft rejection[J]. Front Immunol, 2021, 12: 648539. DOI: 10.3389/fimmu.2021.648539.
    [3]
    CHEN S, LAKKIS FG, LI XC. The many shades of macrophages in regulating transplant outcome[J]. Cell Immunol, 2020, 349: 104064. DOI: 10.1016/j.cellimm.2020.104064.
    [4]
    GOSWAMI R. The current state of artificial intelligence in cardiac transplantation[J]. Curr Opin Organ Transplant, 2021, 26(3): 296-301. DOI: 10.1097/MOT.0000000000000875.
    [5]
    LAI X, ZHENG X, MATHEW JM, et al. Tackling chronic kidney transplant rejection: challenges and promises[J]. Front Immunol, 2021, 12: 661643. DOI: 10.3389/fimmu.2021.661643.
    [6]
    ANGELICO R, SENSI B, MANZIA TM, et sl. Chronic rejection after liver transplantation: opening the Pandora's box[J]. World J Gastroenterol, 2021, 27(45): 7771-7783. DOI: 10.3748/wjg.v27.i45.7771.
    [7]
    FRANZ M, NERI D, BERNDT A. Chronic cardiac allograft rejection: critical role of ED-A(+) fibronectin and implications for targeted therapy strategies[J]. J Pathol, 2012, 226(4): 557-561. DOI: 10.1002/path.3968.
    [8]
    LI T, ZHANG Z, BARTOLACCI JG, et al. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection[J]. J Clin Invest, 2020, 130(10): 5397-5412. DOI: 10.1172/JCI133008.
    [9]
    LUO Y, SHAO L, CHANG J, et al. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion[J]. Blood Adv, 2018, 2(8): 859-870. DOI: 10.1182/bloodadvances.2018015685.
    [10]
    NAKAI K. Multiple roles of macrophage in skin[J]. J Dermatol Sci, 2021, 104(1): 2-10. DOI: 10.1016/j.jdermsci.2021.08.008.
    [11]
    FLEMING BD, CHANDRASEKARAN P, DILLON LA, et al. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling[J]. J Leukoc Biol, 2015, 98(3): 395-407. DOI: 10.1189/jlb.2A1114-560R.
    [12]
    ZHANG F, ZHANG J, CAO P, et al. The characteristics of regulatory macrophages and their roles in transplantation[J]. Int Immunopharmacol, 2021, 91: 107322. DOI: 10.1016/j.intimp.2020.107322.
    [13]
    HOU Y, ZHU L, TIAN H, et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis[J]. Protein Cell, 2018, 9(12): 1027-1038. DOI: 10.1007/s13238-018-0505-z.
    [14]
    ARABPOUR M, SAGHAZADEH A, REZAEI N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes[J]. Int Immunopharmacol, 2021, 97: 107823. DOI: 10.1016/j.intimp.2021.107823.
    [15]
    MU X, LI Y, FAN GC. Tissue-resident macrophages in the control of infection and resolution of inflammation[J]. Shock, 2021, 55(1): 14-23. DOI: 10.1097/SHK.0000000000001601.
    [16]
    ESCHLUNDT C, FISCHER H, BUCHER CH, et al. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time[J]. Acta Biomater, 2021, 133: 46-57. DOI: 10.1016/j.actbio.2021.04.052.
    [17]
    HIRAO H, NAKAMURA K, KUPIEC-WEGLINSKI JW. Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(4): 239-256. DOI: 10.1038/s41575-021-00549-8.
    [18]
    ELCHANINOV A, VISHNYAKOVA P, MENYAILO E, et al. An eye on kupffer cells: development, phenotype and the macrophage niche[J]. Int J Mol Sci, 2022, 23(17): 9868. DOI: 10.3390/ijms23179868.
    [19]
    TRAN S, BABA I, POUPEL L, et al. Impaired kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis[J]. Immunity, 2020, 53(3): 627-640. DOI: 10.1016/j.immuni.2020.06.003.
    [20]
    SHEN Q, WANG Y, CHEN J, et al. Single-cell RNA sequencing reveals the immunological profiles of renal allograft rejection in mice[J]. Front Immunol, 2021, 12: 693608. DOI: 10.3389/fimmu.2021.693608.
    [21]
    SABLIK KA, JORDANOVA ES, POCORNI N, et al. Immune cell infiltrate in chronic-active antibody-mediated rejection[J]. Front Immunol, 2020, 10: 3106. DOI: 10.3389/fimmu.2019.03106.
    [22]
    VAN DEN BOSCH TPP, HILBRANDS LB, KRAAIJEVELD R, et al. Pretransplant numbers of CD16+ monocytes as a novel biomarker to predict acute rejection after kidney transplantation: a pilot study[J]. Am J Transplant, 2017, 17(10): 2659-2667. DOI: 10.1111/ajt.14280.
    [23]
    KAUL AM, GOPARAJU S, DVORINA N, et al. Acute and chronic rejection: compartmentalization and kinetics of counterbalancing signals in cardiac transplants[J]. Am J Transplant, 2015, 15(2): 333-345. DOI: 10.1111/ajt.13014.
    [24]
    WU C, ZHAO Y, XIAO X, et al. Graft-infiltrating macrophages adopt an M2 phenotype and are inhibited by purinergic receptor P2X7 antagonist in chronic rejection[J]. Am J Transplant, 2016, 16(9): 2563-2573. DOI: 10.1111/ajt.13808.
    [25]
    KITCHENS WH, CHASE CM, UEHARA S, et al. Macrophage depletion suppresses cardiac allograft vasculopathy in mice[J]. Am J Transplant, 2007, 7(12): 2675-2682. DOI: 10.1111/j.1600-6143.2007.01997.x.
    [26]
    MITCHELL RN. Graft vascular disease: immune response meets the vessel wall[J]. Annu Rev Pathol, 2009, 4: 19-47. DOI: 10.1146/annurev.pathol.3.121806.151449.
    [27]
    FILIĆ V, MIJANOVIĆ L, PUTAR D, et al. Regulation of the actin cytoskeleton via Rho GTPase signalling in dictyostelium and mammalian cells: a parallel slalom[J]. Cells, 2021, 10(7): 1592. DOI: 10.3390/cells10071592.
    [28]
    KLOC M, UOSEF A, VILLAGRAN M, et al. RhoA- and actin-dependent functions of macrophages from the rodent cardiac transplantation model perspective -timing is the essence[J]. Biology (Basel), 2021, 10(2): 70. DOI: 10.3390/biology10020070.
    [29]
    LIU Y, CHEN W, MINZE LJ, et al. Dissonant response of M0/M2 and M1 bone-marrow-derived macrophages to RhoA pathway interference[J]. Cell Tissue Res, 2016, 366(3): 707-720. DOI: 10.1007/s00441-016-2491-x.
    [30]
    VERHEIJ M, ZEERLEDER S, VOERMANS C. Heme oxygenase-1: equally important in allogeneic hematopoietic stem cell transplantation and organ transplantation?[J]. Transpl Immunol, 2021, 68: 101419. DOI: 10.1016/j.trim.2021.101419.
    [31]
    TOKI D, ZHANG W, HOR KL, et al. The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation[J]. Am J Transplant, 2014, 14(9): 2126-2136. DOI: 10.1111/ajt.12803.
    [32]
    WANG X, CHEN J, XU J, et al. The role of macrophages in kidney fibrosis[J]. Front Physiol, 2021, 12: 705838. DOI: 10.3389/fphys.2021.705838.
    [33]
    WANG YY, JIANG H, PAN J, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury[J]. J Am Soc Nephrol, 2017, 28(7): 2053-2067. DOI: 10.1681/ASN.2016050573.
    [34]
    ZOU H, MING B, LI J, et al. Extracellular HMGB1 contributes to the chronic cardiac allograft vasculopathy/fibrosis by modulating TGF-β1 signaling[J]. Front Immunol, 2021, 12: 641973. DOI: 10.3389/fimmu.2021.641973.
    [35]
    SCHAUERTE C, HÜBNER A, RONG S, et al. Antagonism of profibrotic microRNA-21 improves outcome of murine chronic renal allograft dysfunction[J]. Kidney Int, 2017, 92(3): 646-656. DOI: 10.1016/j.kint.2017.02.012.
    [36]
    BALAM S, BUCHTLER S, WINTER F, et al. Donor-but not recipient-derived cells produce collagen-1 in chronically rejected cardiac allografts[J]. Front Immunol, 2022, 12: 816509. DOI: 10.3389/fimmu.2021.816509.
    [37]
    王光川, LI XC. 天然免疫细胞的获得性免疫属性及其在移植排斥中的作用[J]. 中华消化外科杂志, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.

    WANG GC, LI XC. Features of acquired immune properties in innate immune cells and its roles in transplant rejection[J]. Chin J Dig Surg, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.
    [38]
    罗登科. 巨噬细胞在器官移植免疫排斥反应中的研究进展[J]. 海南医学, 2022, 33(16): 2148-2152. DOI: 10.3969/j.issn.1003-6350.2022.16.029.

    LUO DK. Research progress of macrophages in immune rejection of organ transplantation[J]. Hainan Med J, 2022, 33(16): 2148-2152. DOI: 10.3969/j.issn.1003-6350.2022.16.029.
    [39]
    SUBUDDHI A, UOSEF A, ZOU D, et al. Comparative transcriptome profile of mouse macrophages treated with the RhoA/Rock pathway inhibitors Y27632, Fingolimod (Gilenya), and Rezurock (Belumosudil, SLx-2119)[J]. Int Immunopharmacol, 2023, 118: 110017. DOI: 10.1016/j.intimp.2023.110017.
    [40]
    CHEN W, CHEN W, CHEN S, et al. Fingolimod (FTY720) prevents chronic rejection of rodent cardiac allografts through inhibition of the RhoA pathway[J]. Transpl Immunol, 2021, 65: 101347. DOI: 10.1016/j.trim.2020.101347.
    [41]
    LIU Y, CHEN W, WU C, et al. Macrophage/monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts[J]. J Heart Lung Transplant, 2017, 36(3): 340-354. DOI: 10.1016/j.healun.2016.08.011.
    [42]
    UOSEF A, VAUGHN N, CHU X, et al. Siponimod (Mayzent) downregulates RhoA and cell surface expression of the S1P1 and CX3CR1 receptors in mouse RAW 264.7 macrophages[J]. Arch Immunol Ther Exp (Warsz), 2020, 68(3): 19. DOI: 10.1007/s00005-020-00584-4.
    [43]
    USUELLI V, BEN NASR M, D'ADDIO F, et al. miR-21 antagonism reprograms macrophage metabolism and abrogates chronic allograft vasculopathy[J]. Am J Transplant, 2021, 21(10): 3280-3295. DOI: 10.1111/ajt.16581.
    [44]
    ZHANG Z, ZHANG N, SHI J, et al. Allograft or recipient ST2 deficiency oppositely affected cardiac allograft vasculopathy via differentially altering immune cells infiltration[J]. Front Immunol, 2021, 12: 657803. DOI: 10.3389/fimmu.2021.657803.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (243) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return