Volume 14 Issue 3
May  2023
Turn off MathJax
Article Contents
Wei Jianchao, He Kaiming, Sun Qiquan. Research highlights on kidney transplantation in 2022 from China[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 336-342. doi: 10.3969/j.issn.1674-7445.2023.03.003
Citation: Wei Jianchao, He Kaiming, Sun Qiquan. Research highlights on kidney transplantation in 2022 from China[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 336-342. doi: 10.3969/j.issn.1674-7445.2023.03.003

Research highlights on kidney transplantation in 2022 from China

doi: 10.3969/j.issn.1674-7445.2023.03.003
More Information
  • Corresponding author: Sun Qiquan, Email: sunqiq@mail.sysu.edu.cn
  • Received Date: 2023-04-01
  • Publish Date: 2023-05-15
  • As a mature organ transplantation surgery, kidney transplantation has become the best means for treating end-stage renal diseases and improves the quality of survival of patients. However, there are still many challenges after kidney transplantation, such as rejection, infection, ischemia-reperfusion injury and fibrosis of transplant kidney, which seriously affect the efficacy of kidney transplantation. With the development of translational medicine, regenerative medicine, biomaterials and other emerging fields, Chinese research teams continue to work hard and publish many bright researches to solve various clinical problems related to kidney transplantation. This article reviews the basic and clinical frontiers of kidney transplantation in 2022 as well as the new techniques and advances in the field of transplantation, focuses on the achievements made by the Chinese team in the field of transplantation in 2022, and provides ideas for solving the major clinical problems of kidney transplantation from the perspective of localization to promote the further development of kidney transplantation in China.

     

  • loading
  • [1]
    STROHMAIER S, WALLISCH C, KAMMER M, et al. Survival benefit of first single-organ deceased donor kidney transplantation compared with long-term dialysis across ages in transplant-eligible patients with kidney failure[J]. JAMA Netw Open, 2022, 5(10): e2234971. DOI: 10.1001/jamanetworkopen.2022.34971.
    [2]
    HARIHARAN S, ISRANI AK, DANOVITCH G. Long-term survival after kidney transplantation[J]. N Engl J Med, 2021, 385(8): 729-743. DOI: 10.1056/NEJMra2014530.
    [3]
    MATSUDA Y, WATANABE T, LI XK. Approaches for controlling antibody-mediated allograft rejection through targeting B cells[J]. Front Immunol, 2021, 12: 682334. DOI: 10.3389/fimmu.2021.682334.
    [4]
    ZENG X, LIU G, PENG W, et al. Combined deficiency of SLAMF8 and SLAMF9 prevents endotoxin-induced liver inflammation by downregulating TLR4 expression on macrophages[J]. Cell Mol Immunol, 2020, 17(2): 153-162. DOI: 10.1038/s41423-018-0191-z.
    [5]
    TENG L, SHEN L, ZHAO W, et al. SLAMF8 participates in acute renal transplant rejection via TLR4 pathway on pro-inflammatory macrophages[J]. Front Immunol, 2022, 13: 846695. DOI: 10.3389/fimmu.2022.846695.
    [6]
    ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494): eaaz7548. DOI: 10.1126/science.aaz7548.
    [7]
    HAAS M, LOUPY A, LEFAUCHEUR C, et al. The Banff 2017 Kidney Meeting report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials[J]. Am J Transplant, 2018, 18(2): 293-307. DOI: 10.1111/ajt.14625.
    [8]
    JEONG HJ. Diagnosis of renal transplant rejection: Banff classification and beyond[J]. Kidney Res Clin Pract, 2020, 39(1): 17-31. DOI: 10.23876/j.krcp.20.003.
    [9]
    LIU SJ, MA K, LIU LS, et al. Point-of-care non-invasive enzyme-cleavable nanosensors for acute transplant rejection detection[J]. Biosens Bioelectron, 2022, 215: 114568. DOI: 10.1016/j.bios.2022.114568.
    [10]
    LUO Z, LIAO T, ZHANG Y, et al. Ex vivo anchored PD-L1 functionally prevent in vivo renal allograft rejection[J]. Bioeng Transl Med, 2022, 7(3): e10316. DOI: 10.1002/btm2.10316.
    [11]
    WANG W, TENG Y, XUE JJ, et al. Nanotechnology in kidney and islet transplantation: an ongoing, promising field[J]. Front Immunol, 2022, 13: 846032. DOI: 10.3389/fimmu.2022.846032.
    [12]
    LIU C, YAN P, XU X, et al. In vivo kidney allograft endothelial specific scavengers for on-site inflammation reduction under antibody-mediated rejection[J]. Small, 2022, 18(36): e2106746. DOI: 10.1002/smll.202106746.
    [13]
    ASHCROFT J, LEIGHTON P, ELLIOTT TR, et al. Extracellular vesicles in kidney transplantation: a state-of-the-art review[J]. Kidney Int, 2022, 101(3): 485-497. DOI: 10.1016/j.kint.2021.10.038.
    [14]
    LIN J, LV J, YU S, et al. Transcript engineered extracellular vesicles alleviate alloreactive dynamics in renal transplantation[J]. Adv Sci (Weinh), 2022, 9(31): e2202633. DOI: 10.1002/advs.202202633.
    [15]
    TSAI HI, WU Y, LIU X, et al. Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection[J]. Adv Sci (Weinh), 2022, 9(3): e2102634. DOI: 10.1002/advs.202102634.
    [16]
    ZHAO C, XU Z, WANG Z, et al. Role of tumor necrosis factor-α in epithelial-to-mesenchymal transition in transplanted kidney cells in recipients with chronic allograft dysfunction[J]. Gene, 2018, 642: 483-490. DOI: 10.1016/j.gene.2017.11.059.
    [17]
    HILL C, LI J, LIU D, et al. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis[J]. Cell Death Dis, 2019, 10(8): 591. DOI: 10.1038/s41419-019-1820-x.
    [18]
    MJÖRNSTEDT L, SCHWARTZ SØRENSEN S, VON ZUR MÜHLEN B, et al. Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation[J]. Transpl Int, 2015, 28(1): 42-51. DOI: 10.1111/tri.12437.
    [19]
    GUI Z, SUO C, TAO J, et al. Everolimus alleviates renal allograft interstitial fibrosis by inhibiting epithelial-to-mesenchymal transition not only via inducing autophagy but also via stabilizing IκB-α[J]. Front Immunol, 2022, 12: 753412. DOI: 10.3389/fimmu.2021.753412.
    [20]
    XIA Z, ZHANG C, GUO C, et al. Nanoformulation of a carbon monoxide releasing molecule protects against cyclosporin A-induced nephrotoxicity and renal fibrosis via the suppression of the NLRP3 inflammasome mediated TGF-β/Smad pathway[J]. Acta Biomater, 2022, 144: 42-53. DOI: 10.1016/j.actbio.2022.03.024.
    [21]
    WANG X, JIANG S, FEI L, et al. Tacrolimus causes hypertension by increasing vascular contractility via RhoA (ras homolog family member A)/ROCK (Rho-associated protein kinase) pathway in mice[J]. Hypertension, 2022, 79(10): 2228-2238. DOI: 10.1161/HYPERTENSIONAHA.122.19189.
    [22]
    LIANG H, ZHANG P, YU B, et al. Machine perfusion combined with antibiotics prevents donor-derived infections caused by multidrug-resistant bacteria[J]. Am J Transplant, 2022, 22(7): 1791-1803. DOI: 10.1111/ajt.17032.
    [23]
    XIANG X, DONG G, ZHU J, et al. Inhibition of HDAC3 protects against kidney cold storage/transplantation injury and allograft dysfunction[J]. Clin Sci (Lond), 2022, 136(1): 45-60. DOI: 10.1042/CS20210823.
    [24]
    SMITH SF, HOSGOOD SA, NICHOLSON ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells[J]. Kidney Int, 2019, 95(1): 50-56. DOI: 10.1016/j.kint.2018.10.009.
    [25]
    KOMADA T, CHUNG H, LAU A, et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD[J]. J Am Soc Nephrol, 2018, 29(4): 1165-1181. DOI: 10.1681/ASN.2017080863.
    [26]
    HUANG T, YIN H, NING W, et al. Expression of inflammasomes NLRP1, NLRP3 and AIM2 in different pathologic classification of lupus nephritis[J]. Clin Exp Rheumatol, 2020, 38(4): 680-690.
    [27]
    YANG H, WU Y, CHENG M, et al. Roxadustat (FG-4592) protects against ischaemia-induced acute kidney injury via improving CD73 and decreasing AIM2 inflammasome activation[J]. Nephrol Dial Transplant, 2023, 38(4): 858-875. DOI: 10.1093/ndt/gfac308.
    [28]
    TEJCHMAN K, KOTFIS K, SIEŃKO J. Biomarkers and mechanisms of oxidative stress-last 20 years of research with an emphasis on kidney damage and renal transplantation[J]. Int J Mol Sci, 2021, 22(15): 8010. DOI: 10.3390/ijms22158010.
    [29]
    FENG S, QU Y, CHU B, et al. Novel gold-platinum nanoparticles serve as broad-spectrum antioxidants for attenuating ischemia reperfusion injury of the kidney[J]. Kidney Int, 2022, 102(5): 1057-1072. DOI: 10.1016/j.kint.2022.07.004.
    [30]
    LI X, LI R, JI B, et al. Integrative metagenomic and metabolomic analyses reveal the role of gut microbiota in antibody-mediated renal allograft rejection[J]. J Transl Med, 2022, 20(1): 614. DOI: 10.1186/s12967-022-03825-6.
    [31]
    WANG G, SUI W, XUE W, et al. Comprehensive analysis of B and T cell receptor repertoire in patients after kidney transplantation by high-throughput sequencing[J]. Clin Immunol, 2022, 245: 109162. DOI: 10.1016/j.clim.2022.109162.
    [32]
    HAN S, ZHAO W, WANG C, et al. Preliminary investigation of the biomarkers of acute renal transplant rejection using integrated proteomics studies, Gene Expression Omnibus datasets, and RNA sequencing[J]. Front Med (Lausanne), 2022, 9: 905464. DOI: 10.3389/fmed.2022.905464.
    [33]
    YIN S, TAN Q, YANG Y, et al. Transplant outcomes of 100 cases of living-donor ABO-incompatible kidney transplantation[J]. Chin Med J (Engl), 2022, 135(19): 2303-2310. DOI: 10.1097/CM9.0000000000002138.
    [34]
    ZHANG F, LIANG J, XIONG Y, et al. Serum uric acid as a risk factor for rejection after deceased donor kidney transplantation: a mono-institutional analysis of paired kidneys[J]. Front Immunol, 2022, 13: 973425. DOI: 10.3389/fimmu.2022.973425.
    [35]
    许瀚仁, 王继纳, 杨橙, 等. 肾移植患者尿小圆上皮细胞阳性指标与BK病毒尿症的临床相关性[J]. 复旦学报(医学版), 2021, 48(6): 754-761. DOI: 10.3969/j.issn.1672-8467.2021.06.006.

    XU HR, WANG JN, YANG C, et al. Positive indicators of urine small round epithelial cells and their clinical correlation with BK viruria in renal transplant recipients[J]. Fudan Univ J Med Sci, 2021, 48(6): 754-761. DOI: 10.3969/j.issn.1672-8467.2021.06.006.
    [36]
    王惠, 徐进, 王素霞. 肾移植受者BK病毒感染的电镜超微病理观察[J]. 电子显微学报, 2023, 42(1): 1-5. DOI: 10.3969/j.issn.1000-6281.2023.01.001.

    WANG H, XU J, WANG SX. Electron microscopic observation of BK virus infection in recipients of transplanted kidney[J]. J Chin Electr Microsc Soc, 2023, 42(1): 1-5. DOI: 10.3969/j.issn.1000-6281.2023.01.001.
    [37]
    YANG D, ZHUANG B, WANG Y, et al. High-frequency US for BK polyomavirus-associated nephropathy after kidney transplant[J]. Radiology, 2022, 304(2): 333-341. DOI: 10.1148/radiol.211855.
    [38]
    OELLERICH M, BUDDE K, OSMANODJA B, et al. Donor-derived cell-free DNA as a diagnostic tool in transplantation[J]. Front Genet, 2022, 13: 1031894. DOI: 10.3389/fgene.2022.1031894.
    [39]
    CHEN XT, QIU J, WU ZX, et al. Using both plasma and urine donor-derived cell-free DNA to identify various renal allograft injuries[J]. Clin Chem, 2022, 68(6): 814-825. DOI: 10.1093/clinchem/hvac053.
    [40]
    WEN J, SUN R, YANG H, et al. Detection of BK polyomavirus-associated nephropathy using plasma graft-derived cell-free DNA: development of a novel algorithm from programmed monitoring[J]. Front Immunol, 2022, 13: 1006970. DOI: 10.3389/fimmu.2022.1006970.
    [41]
    WANG J, LI J, CHEN Z, et al. A nomogram for predicting BK virus activation in kidney transplantation recipients using clinical risk factors[J]. Front Med (Lausanne), 2022, 9: 770699. DOI: 10.3389/fmed.2022.770699.
    [42]
    ZHANG J, QIN H, CHANG M, et al. Gut microbiota dysbiosis in BK polyomavirus-infected renal transplant recipients: a case-control study[J]. Front Cell Infect Microbiol, 2022, 12: 860201. DOI: 10.3389/fcimb.2022.860201.
    [43]
    FANG Y, ZHANG C, WANG Y, et al. Dynamic risk prediction of BK polyomavirus reactivation after renal transplantation[J]. Front Immunol, 2022, 13: 971531. DOI: 10.3389/fimmu.2022.971531.
    [44]
    TIAN X, DUAN W, ZHANG X, et al. Metagenomic next-generation sequencing reveals the profile of viral infections in kidney transplant recipients during the COVID-19 pandemic[J]. Front Public Health, 2022, 10: 888064. DOI: 10.3389/fpubh.2022.888064.
    [45]
    ZOU J, QIU T, ZHOU J, et al. Clinical manifestations and outcomes of renal transplantation patients with pneumocystis jirovecii pneumonia and cytomegalovirus co-infection[J]. Front Med (Lausanne), 2022, 9: 860644. DOI: 10.3389/fmed.2022.860644.
    [46]
    CHEN RY, LI DW, WANG JY, et al. Prophylactic effect of low-dose trimethoprim-sulfamethoxazole for pneumocystis jirovecii pneumonia in adult recipients of kidney transplantation: a real-world data study[J]. Int J Infect Dis, 2022, 125: 209-215. DOI: 10.1016/j.ijid.2022.10.004.
    [47]
    GU ZY, LIU WJ, HUANG DL, et al. Preliminary study on the combination effect of clindamycin and low dose trimethoprim-sulfamethoxazole on severe pneumocystis pneumonia after renal transplantation[J]. Front Med (Lausanne), 2022, 9: 827850. DOI: 10.3389/fmed.2022.827850.
    [48]
    PONTICELLI C, REGGIANI F, MORONI G. Delayed graft function in kidney transplant: risk factors, consequences and prevention strategies[J]. J Pers Med, 2022, 12(10): 1557. DOI: 10.3390/jpm12101557.
    [49]
    BAHL D, HADDAD Z, DATOO A, et al. Delayed graft function in kidney transplantation[J]. Curr Opin Organ Transplant, 2019, 24(1): 82-86. DOI: 10.1097/MOT.0000000000000604.
    [50]
    WANG J, LIU J, WU W, et al. Combining clinical parameters and acute tubular injury grading is superior in predicting the prognosis of deceased-donor kidney transplantation: a 7-year observational study[J]. Front Immunol, 2022, 13: 912749. DOI: 10.3389/fimmu.2022.912749.
    [51]
    SHAN XS, HU LK, WANG Y, et al. Effect of perioperative dexmedetomidine on delayed graft function following a donation-after-cardiac-death kidney transplant: a randomized clinical trial[J]. JAMA Netw Open, 2022, 5(6): e2215217. DOI: 10.1001/jamanetworkopen.2022.15217.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (941) PDF downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return