Volume 13 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
Wu Jian, Cao Linping. Application of machine learning in liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 722-729. doi: 10.3969/j.issn.1674-7445.2022.06.005
Citation: Wu Jian, Cao Linping. Application of machine learning in liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 722-729. doi: 10.3969/j.issn.1674-7445.2022.06.005

Application of machine learning in liver transplantation

doi: 10.3969/j.issn.1674-7445.2022.06.005
More Information
  • Corresponding author: Wu Jian, Email: drwujian@zju.edu.cn
  • Received Date: 2022-05-26
    Available Online: 2022-11-14
  • Publish Date: 2022-11-15
  • Machine learning can efficiently extract the features and establish associations from complex databases, and better predict changes in clinical diseases by constructing models. Liver transplantation is one of the efficacious therapeutic options for all types of end-stage liver diseases and primary liver cancer. Nevertheless, it also faces multiple challenges. How to more effectively allocate the organs, expand the donor liver pool, evaluate the optimal donor-recipient matching, predict the complications after liver transplantation, disease recurrence and long-term survival have been the hot spots and difficulties. In recent years, certain progress has been made in the application of machine learning in the field of liver transplantation, showcasing promising prospect. In this article, the application status and prospect of machine learning in organ allocation before liver transplantation, donor liver evaluation, prediction of perioperative complications, blood transfusion, postoperative new disease, disease recurrence, acute rejection and long-term survival were reviewed, aiming to provide ideas and direction for subsequent investigations.

     

  • loading
  • [1]
    SPANN A, YASODHARA A, KANG J, et al. Applying machine learning in liver disease and transplantation: a comprehensive review[J]. Hepatology, 2020, 71(3): 1093-1105. DOI: 10.1002/hep.31103.
    [2]
    TRAN J, SHARMA D, GOTLIEB N, et al. Application of machine learning in liver transplantation: a review[J]. Hepatol Int, 2022, 16(3): 495-508. DOI: 10.1007/s12072-021-10291-7.
    [3]
    IVANICS T, PATEL MS, ERDMAN L, et al. Artificial intelligence in transplantation (machine-learning classifiers and transplant oncology)[J]. Curr Opin Organ Transplant, 2020, 25(4): 426-434. DOI: 10.1097/MOT.0000000000000773.
    [4]
    KIM WR, MANNALITHARA A, HEIMBACH JK, et al. MELD 3.0: the model for end-stage liver disease updated for the modern era[J]. Gastroenterology, 2021, 161(6): 1887-1895. DOI: 10.1053/j.gastro.2021.08.050.
    [5]
    BRICEÑO J, AYLLÓN MD, CIRIA R. Machine-learning algorithms for predicting results in liver transplantation: the problem of donor-recipient matching[J]. Curr Opin Organ Transplant, 2020, 25(4): 406-411. DOI: 10.1097/MOT.0000000000000781.
    [6]
    LEE J, LEE JG, JUNG I, et al. Development of a Korean liver allocation system using model for end stage liver disease scores: a nationwide, multicenter study[J]. Sci Rep, 2019, 9(1): 7495. DOI: 10.1038/s41598-019-43965-2.
    [7]
    DORADO-MORENO M, PÉREZ-ORTIZ M, GUTIÉRREZ PA, et al. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem[J]. Artif Intell Med, 2017, 77: 1-11. DOI: 10.1016/j.artmed.2017.02.004.
    [8]
    QU Z, KRAUTH C, AMELUNG VE, et al. Decision modelling for economic evaluation of liver transplantation[J]. World J Hepatol, 2018, 10(11): 837-848. DOI: 10.4254/wjh.v10.i11.837.
    [9]
    BERTSIMAS D, KUNG J, TRICHAKIS N, et al. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation[J]. Am J Transplant, 2019, 19(4): 1109-1118. DOI: 10.1111/ajt.15172.
    [10]
    VAGEFI PA, BERTSIMAS D, HIROSE R, et al. The rise and fall of the model for end-stage liver disease score and the need for an optimized machine learning approach for liver allocation[J]. Curr Opin Organ Transplant, 2020, 25(2): 122-125. DOI: 10.1097/MOT.0000000000000734.
    [11]
    CUCCHETTI A, VIVARELLI M, HEATON ND, et al. Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease[J]. Gut, 2007, 56(2): 253-258. DOI: 10.1136/gut.2005.084434.
    [12]
    BRICEÑO J, CRUZ-RAMÍREZ M, PRIETO M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study[J]. J Hepatol, 2014, 61(5): 1020-1028. DOI: 10.1016/j.jhep.2014.05.039.
    [13]
    AYLLÓN MD, CIRIA R, CRUZ-RAMÍREZ M, et al. Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation[J]. Liver Transpl, 2018, 24(2): 192-203. DOI: 10.1002/lt.24870.
    [14]
    ERSHOFF BD, LEE CK, WRAY CL, et al. Training and validation of deep neural networks for the prediction of 90-day post-liver transplant mortality using UNOS registry data[J]. Transplant Proc, 2020, 52(1): 246-258. DOI: 10.1016/j.transproceed.2019.10.019.
    [15]
    LU F, WU F, HU P, et al. Automatic 3D liver location and segmentation via convolutional neural network and graph cut[J]. Int J Comput Assist Radiol Surg, 2017, 12(2): 171-182. DOI: 10.1007/s11548-016-1467-3.
    [16]
    KAVUR AE, GEZER NS, BARIŞ M, et al. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors[J]. Diagn Interv Radiol, 2020, 26(1): 11-21. DOI: 10.5152/dir.2019.19025.
    [17]
    LIU Z, WANG W, ZHUANG L, et al. Clear mortality gap caused by graft macrosteatosis in Chinese patients after cadaveric liver transplantation[J]. Hepatobiliary Surg Nutr, 2020, 9(6): 739-758. DOI: 10.21037/hbsn.2019.12.02.
    [18]
    KIM WR, LAKE JR, SMITH JM, et al. OPTN/SRTR 2016 annual data report: liver[J]. Am J Transplant, 2018, 18(Suppl 1): 172-253. DOI: 10.1111/ajt.14559.
    [19]
    MOCCIA S, MATTOS LS, PATRINI I, et al. Computer-assisted liver graft steatosis assessment via learning-based texture analysis[J]. Int J Comput Assist Radiol Surg, 2018, 13(9): 1357-1367. DOI: 10.1007/s11548-018-1787-6.
    [20]
    CESARETTI M, BRUSTIA R, GOUMARD C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis assessment[J]. Liver Transpl, 2020, 26(10): 1224-1232. DOI: 10.1002/lt.25801.
    [21]
    YERSIZ H, LEE C, KALDAS FM, et al. Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers[J]. Liver Transpl, 2013, 19(4): 437-449. DOI: 10.1002/lt.23615.
    [22]
    SUN L, MARSH JN, MATLOCK MK, et al. Deep learning quantification of percent steatosis in donor liver biopsy frozen sections[J]. EBioMedicine, 2020, 60: 103029. DOI: 10.1016/j.ebiom.2020.103029.
    [23]
    PÉREZ-SANZ F, RIQUELME-PÉREZ M, MARTÍNEZ-BARBA E, et al. Efficiency of machine learning algorithms for the determination of macrovesicular steatosis in frozen sections stained with Sudan to evaluate the quality of the graft in liver transplantation[J]. Sensors (Basel), 2021, 21(6): 1993. DOI: 10.3390/s21061993.
    [24]
    PHAM PT, SLAVOV C, PHAM PC. Acute kidney injury after liver, heart, and lung transplants: dialysis modality, predictors of renal function recovery, and impact on survival[J]. Adv Chronic Kidney Dis, 2009, 16(4): 256-267. DOI: 10.1053/j.ackd.2009.04.002.
    [25]
    JUN IG, KWON HM, JUNG KW, et al The impact of postreperfusion syndrome on acute kidney injury in living donor liver transplantation: a propensity score analysis[J]. Anesth Analg, 2018, 127(2): 369-378. DOI: 10.1213/ANE.0000000000003370.
    [26]
    LEE HC, YOON SB, YANG SM, et al. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs. logistic regression model[J]. J Clin Med, 2018, 7(11): 428. DOI: 10.3390/jcm7110428.
    [27]
    HE ZL, ZHOU JB, LIU ZK, et al. Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(3): 222-231. DOI: 10.1016/j.hbpd.2021.02.001.
    [28]
    ZHANG Y, YANG D, LIU Z, et al. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation[J]. J Transl Med, 2021, 19(1): 321. DOI: 10.1186/s12967-021-02990-4.
    [29]
    CHEN C, YANG D, GAO S, et al. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation[J]. Respir Res, 2021, 22(1): 94. DOI: 10.1186/s12931-021-01690-3.
    [30]
    CYWINSKI JB, ALSTER JM, MILLER C, et al. Prediction of intraoperative transfusion requirements during orthotopic liver transplantation and the influence on postoperative patient survival[J]. Anesth Analg, 2014, 118(2): 428-437. DOI: 10.1213/ANE.0b013e3182a76f19.
    [31]
    LIU LP, ZHAO QY, WU J, et al. Machine learning for the prediction of red blood cell transfusion in patients during or after liver transplantation surgery[J]. Front Med (Lausanne), 2021, 8: 632210. DOI: 10.3389/fmed.2021.632210.
    [32]
    KESIRAJU S, PARITALA P, RAO CH UM, et al. New onset of diabetes after transplantation-an overview of epidemiology, mechanism of development and diagnosis[J]. Transpl Immunol, 2014, 30(1): 52-58. DOI: 10.1016/j.trim.2013.10.006.
    [33]
    BHAT V, TAZARI M, WATT KD, et al. New-onset diabetes and preexisting diabetes are associated with comparable reduction in long-term survival after liver transplant: a machine learning approach[J]. Mayo Clin Proc, 2018, 93(12): 1794-1802. DOI: 10.1016/j.mayocp.2018.06.020.
    [34]
    KONERMAN MA, FRITZE D, WEINBERG RL, et al. Incidence of and risk assessment for adverse cardiovascular outcomes after liver transplantation: a systematic review[J]. Transplantation, 2017, 101(7): 1645-1657. DOI: 10.1097/TP.0000000000001710.
    [35]
    JAIN V, BANSAL A, RADAKOVICH N, et al. Machine learning models to predict major adverse cardiovascular events after orthotopic liver transplantation: a cohort study[J]. J Cardiothorac Vasc Anesth, 2021, 35(7): 2063-2069. DOI: 10.1053/j.jvca.2021.02.006.
    [36]
    BELLONI-FORTINA A, PIASERICO S, BORDIGNON M, et al. Skin cancer and other cutaneous disorders in liver transplant recipients[J]. Acta Derm Venereol, 2012, 92(4): 411-415. DOI: 10.2340/00015555-1316.
    [37]
    TANAKA T, VOIGT MD. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation[J]. J Cancer Res Clin Oncol, 2018, 144(3): 607-615. DOI: 10.1007/s00432-018-2589-5.
    [38]
    MARSH JW, DVORCHIK I, SUBOTIN M, et al. The prediction of risk of recurrence and time to recurrence of hepatocellular carcinoma after orthotopic liver transplantation: a pilot study[J]. Hepatology, 1997, 26(2): 444-450. DOI: 10.1002/hep.510260227.
    [39]
    MARSH JW, FINKELSTEIN SD, DEMETRIS AJ, et al. Genotyping of hepatocellular carcinoma in liver transplant recipients adds predictive power for determining recurrence-free survival[J]. Liver Transpl, 2003, 9(7): 664-671. DOI: 10.1053/jlts.2003.50144.
    [40]
    RODRIGUEZ-LUNA H, VARGAS HE, BYRNE T, et al. Artificial neural network and tissue genotyping of hepatocellular carcinoma in liver-transplant recipients: prediction of recurrence[J]. Transplantation, 2005, 79(12): 1737-1740. DOI: 10.1097/01.tp.0000161794.32007.d1.
    [41]
    NAM JY, LEE JH, BAE J, et al. Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: a multicenter study[J]. Cancers (Basel), 2020, 12(10): 2791. DOI: 10.3390/cancers12102791.
    [42]
    HE T, FONG JN, MOORE LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894. DOI: 10.1016/j.compmedimag.2021.101894.
    [43]
    IVANICS T, NELSON W, PATEL MS, et al. The toronto postliver transplantation hepatocellular carcinoma recurrence calculator: a machine learning approach[J]. Liver Transpl, 2022, 28(4): 593-602. DOI: 10.1002/lt.26332.
    [44]
    WIESNER RH, LUDWIG J, KROM RA, et al. Hepatic allograft rejection: new developments in terminology, diagnosis, prevention, and treatment[J]. Mayo Clin Proc, 1993, 68(1): 69-79. DOI: 10.1016/s0025-6196(12)60022-6.
    [45]
    HUGHES VF, MELVIN DG, NIRANJAN M, et al. Clinical validation of an artificial neural network trained to identify acute allograft rejection in liver transplant recipients[J]. Liver Transpl, 2001, 7(6): 496-503. DOI: 10.1053/jlts.2001.24642.
    [46]
    ZARE A, ZARE MA, ZAREI N, et al. A neural network approach to predict acute allograft rejection in liver transplant recipients using routine laboratory data[J]. Hepat Mon, 2017, 17(12): e55092. DOI: 10.5812/hepatmon.55092.
    [47]
    VEERANKUTTY FH, JAYAN G, YADAV MK, et al. Artificial intelligence in hepatology, liver surgery and transplantation: emerging applications and frontiers of research[J]. World J Hepatol, 2021, 13(12): 1977-1990. DOI: 10.4254/wjh.v13.i12.1977.
    [48]
    LIU CL, SOONG RS, LEE WC, et al. Predicting short-term survival after liver transplantation using machine learning[J]. Sci Rep, 2020, 10(1): 5654. DOI: 10.1038/s41598-020-62387-z.
    [49]
    HOOT N, ARONSKY D. Using Bayesian networks to predict survival of liver transplant patients[J]. AMIA Annu Symp Proc, 2005: 345-349.
    [50]
    KHOSRAVI B, POURAHMAD S, BAHREINI A, et al. Five years survival of patients after liver transplantation and its effective factors by neural network and Cox poroportional hazard regression models[J]. Hepat Mon, 2015, 15(9): e25164. DOI: 10.5812/hepatmon.25164.
    [51]
    KANTIDAKIS G, PUTTER H, LANCIA C, et al. Survival prediction models since liver transplantation-comparisons between Cox models and machine learning techniques[J]. BMC Med Res Methodol, 2020, 20(1): 277. DOI: 10.1186/s12874-020-01153-1.
    [52]
    AKBILGIC O, DAVIS RL. The promise of machine learning: when will it be delivered?[J]. J Card Fail, 2019, 25(6): 484-485. DOI: 10.1016/j.cardfail.2019.04.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (309) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return