Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Zhang Yang, Yang Jinwei, Li Xingde, et al. Research progress on the role of miR-155 in rejection of organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 666-671. doi: 10.3969/j.issn.1674-7445.2022.05.018
Citation: Zhang Yang, Yang Jinwei, Li Xingde, et al. Research progress on the role of miR-155 in rejection of organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 666-671. doi: 10.3969/j.issn.1674-7445.2022.05.018

Research progress on the role of miR-155 in rejection of organ transplantation

doi: 10.3969/j.issn.1674-7445.2022.05.018
More Information
  • Corresponding author: Song Cangsang, Email: songcs163@163.com
  • Received Date: 2022-03-17
    Available Online: 2022-09-14
  • Publish Date: 2022-09-15
  • Rejection has constantly been an unresolved challenge in the field of organ transplantation. The research on the mechanism of rejection plays a significant role in improving the efficacy of organ transplantation and enhancing the survival rate of graft. The innate and specific immune responses of the human body jointly participate in the graft rejection, leading to graft injury. In recent years, multiple researchers have conducted in-depth studies on the mechanism underlying the role of microRNA (miR) in regulating rejection. Among them, miR-155 has been widely considered as a key factor involved in immune regulation. The expression level and functional status of miR-155 may be intimately associated with the occurrence of rejection, which may become a new target for overcoming rejection. In this article, relevant studies on the role of miR-155 in regulating key immune cells in innate and specific immune responses were reviewed, aiming to provide novel ideas for the development of new immunosuppressants and rejection therapy.

     

  • loading
  • [1]
    RAJAKUMAR T, HOROS R, JEHN J, et al. A blood-based miRNA signature with prognostic value for overall survival in advanced stage non-small cell lung cancer treated with immunotherapy[J]. NPJ Precis Oncol, 2022, 6(1): 19. DOI: 10.1038/s41698-022-00262-y.
    [2]
    TU Y, GUO R, LI J, et al. miRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654[J]. Front Immunol, 2019, 10: 2229. DOI: 10.3389/fimmu.2019.02229.
    [3]
    HU J, HUANG S, LIU X, et al. miR-155: an important role in inflammation response[J]. J Immunol Res, 2022: 7437281. DOI: 10.1155/2022/7437281.
    [4]
    MATIAS-GARCIA PR, WILSON R, MUSSACK V, et al. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples[J]. PLoS One, 2020, 15(1): e0227648. DOI: 10.1371/journal.pone.0227648.
    [5]
    DI STEFANO AB, PAPPALARDO M, MOSCHELLA F, et al. MicroRNAs in solid organ and vascularized composite allotransplantation: potential biomarkers for diagnosis and therapeutic use[J]. Transplant Rev (Orlando), 2020, 34(4): 100566. DOI: 10.1016/j.trre.2020.100566.
    [6]
    WANG X, ZHANG R, HUANG Z, et al. Inhibition of the miR-155 and protein prenylation feedback loop alleviated acute graft-versus-host disease through regulating the balance between T helper 17 and Treg cells[J]. Transpl Immunol, 2021, 69: 101461. DOI: 10.1016/j.trim.2021.101461.
    [7]
    LI GS, CUI L, WANG GD. miR-155-5p regulates macrophage M1 polarization and apoptosis in the synovial fluid of patients with knee osteoarthritis[J]. Exp Ther Med, 2021, 21(1): 68. DOI: 10.3892/etm.2020.9500.
    [8]
    SUN W, ZHANG L, LIN L, et al. Chronic psychological stress impairs germinal center response by repressing miR-155[J]. Brain Behav Immun, 2019, 76: 48-60. DOI: 10.1016/j.bbi.2018.11.002.
    [9]
    ARBORE G, HENLEY T, BIGGINS L, et al. MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells[J]. Life Sci Alliance, 2019, 2(3): e201800244. DOI: 10.26508/lsa.201800244.
    [10]
    GUO J, LIAO M, WANG J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155[J]. Cell Commun Signal, 2021, 19(1): 90. DOI: 10.1186/s12964-021-00771-6.
    [11]
    TANG B, WANG Z, QI G, et al. MicroRNA-155 deficiency attenuates ischemia-reperfusion injury after liver transplantation in mice[J]. Transpl Int, 2015, 28(6): 751-760. DOI: 10.1111/tri.12528.
    [12]
    KIM HJ, PARK SO, BYEON HW, et al. T cell-intrinsic miR-155 is required for Th2 and Th17-biased responses in acute and chronic airway inflammation by targeting several different transcription factors[J]. Immunology, 2022, 116(3): 357-359. DOI: 10.1111/imm.13477.
    [13]
    JIANG K, YANG J, GUO S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27(10): 1758-1771. DOI: 10.1016/j.ymthe.2019.07.003.
    [14]
    RENRICK AN, THOUNAOJAM MC, DE AQUINO MTP, et al. Bortezomib sustains T cell function by inducing miR-155-mediated downregulation of SOCS1 and SHIP1[J]. Front Immunol, 2021, 12: 607044. DOI: 10.3389/fimmu.2021.607044.
    [15]
    LI J, GONG J, LI P, et al. Knockdown of microRNA-155 in Kupffer cells results in immunosuppressive effects and prolongs survival of mouse liver allografts[J]. Transplantation, 2014, 97(6): 626-635. DOI: 10.1097/TP.0000000000000061.
    [16]
    TENG C, LIN C, HUANG F, et al. Intracellular codelivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory disease[J]. Acta Pharm Sin B, 2020, 10(8): 1521-1533. DOI: 10.1016/j.apsb.2020.06.005.
    [17]
    LI J, ZHANG J, GUO H, et al. Critical role of alternative M2 skewing in miR-155 deletion-mediated protection of colitis[J]. Front Immunol, 2018, 9: 904. DOI: 10.3389/fimmu.2018.00904.
    [18]
    MARTINEZ-NUNEZ RT, LOUAFI F, FRIEDMANN PS, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN)[J]. J Biol Chem, 2009, 284(24): 16334-16342. DOI: 10.1074/jbc.M109.011601.
    [19]
    VAN AELST LN, SUMMER G, LI S, et al. RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection[J]. Am J Transplant, 2016, 16(1): 99-110. DOI: 10.1111/ajt.13421.
    [20]
    CEPPI M, PEREIRA PM, DUNAND-SAUTHIER I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells[J]. Proc Natl Acad Sci U S A, 2009, 106(8): 2735-2740. DOI: 10.1073/pnas.0811073106.
    [21]
    ZHANG A, WANG K, ZHOU C, et al. Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection[J]. J Heart Lung Transplant, 2017, 36(2): 175-184. DOI: 10.1016/j.healun.2016.04.018.
    [22]
    ZITZER NC, SNYDER K, MENG X, et al. MicroRNA-155 modulates acute graft-versus-host disease by impacting T cell expansion, migration, and effector function[J]. J Immunol, 2018, 200(12): 4170-4179. DOI: 10.4049/jimmunol.1701465.
    [23]
    WANG J, LI K, ZHANG X, et al. MicroRNA-155 controls iNKT cell development and lineage differentiation by coordinating multiple regulating pathways[J]. Front Cell Dev Biol, 2021, 8: 619220. DOI: 10.3389/fcell.2020.619220.
    [24]
    HUANG H, HE J, TENG X, et al. Combined intrathymic and intravenous injection of mesenchymal stem cells can prolong the survival of rat cardiac allograft associated with decrease in miR-155 expression[J]. J Surg Res, 2013, 185(2): 896-903. DOI: 10.1016/j.jss.2013.06.015.
    [25]
    LU D, NAKAGAWA R, LAZZARO S, et al. The miR-155-PU. 1 axis acts on Pax5 to enable efficient terminal B cell differentiation[J]. J Exp Med, 2014, 211(11): 2183-2198. DOI: 10.1084/jem.20140338.
    [26]
    ALSAADI M, KHAN MY, DALHAT MH, et al. Dysregulation of miRNAs in DLBCL: causative factor for pathogenesis, diagnosis and prognosis[J]. Diagnostics (Basel), 2021, 11(10): 1739. DOI: 10.3390/diagnostics11101739.
    [27]
    FARRONI C, MARASCO E, MARCELLINI V, et al. Dysregulated miR-155 and miR-125b are related to impaired B-cell responses in down syndrome[J]. Front Immunol, 2018, 9: 2683. DOI: 10.3389/fimmu.2018.02683.
    [28]
    MILLÁN O, RUIZ P, ORTS L, et al. Monitoring of miR-181a-5p and miR-155-5p plasmatic expression as prognostic biomarkers for acute and subclinical rejection in de novo adult liver transplant recipients[J]. Front Immunol, 2019, 10: 873. DOI: 10.3389/fimmu.2019.00873.
    [29]
    RUIZ P, MILLÁN O, RÍOS J, et al. MicroRNAs 155-5p, 122-5p, and 181a-5p identify patients with graft dysfunction due to T cell-mediated rejection after liver transplantation[J]. Liver Transpl, 2020, 26(10): 1275-1286. DOI: 10.1002/lt.25842.
    [30]
    TINEL C, LAMARTHÉE B, CALLEMEYN J, et al. Integrative omics analysis unravels microvascular inflammation-related pathways in kidney allograft biopsies[J]. Front Immunol, 2021, 12: 738795. DOI: 10.3389/fimmu.2021.738795.
    [31]
    XIU MX, LIU ZT, TANG J. Screening and identification of key regulatory connections and immune cell infiltration characteristics for lung transplant rejection using mucosal biopsies[J]. Int Immunopharmacol, 2020, 87: 106827. DOI: 10.1016/j.intimp.2020.106827.
    [32]
    GIELIS EM, ANHOLTS JDH, VAN BEELEN E, et al. A combined microRNA and chemokine profile in urine to identify rejection after kidney transplantation[J]. Transplant Direct, 2021, 7(7): e711. DOI: 10.1097/TXD.0000000000001169.
    [33]
    LIN Y, WANG L, GE W, et al. Multi-omics network characterization reveals novel microRNA biomarkers and mechanisms for diagnosis and subtyping of kidney transplant rejection[J]. J Transl Med, 2021, 19(1): 346. DOI: 10.1186/s12967-021-03025-8.
    [34]
    ESMAEILI-BANDBONI A, BAGHERI J, BAKHSHANDEH AR, et al. Serum levels of miR-155, miR-326, and miR-133b as early diagnostic biomarkers for the detection of human acute heart allograft rejection in comparison with serum cardiac troponin T[J]. Heart Surg Forum, 2018, 21(2): E101-E107. DOI: 10.1532/hsf.1887.
    [35]
    BOZZINI S, DEL FANTE C, MOROSINI M, et al. Mechanisms of action of extracorporeal photopheresis in the control of bronchiolitis obliterans syndrome (BOS): involvement of circulating miRNAs[J]. Cells, 2022, 11(7): 1117. DOI: 10.3390/cells11071117.
    [36]
    SOLTANINEJAD E, NICKNAM MH, NAFAR M, et al. Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection[J]. Transpl Immunol, 2015, 33(1): 1-6. DOI: 10.1016/j.trim.2015.05.002.
    [37]
    PALADINI SV, PINTO GH, BUENO RH, et al. Identification of candidate biomarkers for transplant rejection from transcriptome data: a systematic review[J]. Mol Diagn Ther, 2019, 23(4): 439-458. DOI: 10.1007/s40291-019-00397-y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (203) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return