Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Guo Wenwen, Yuan Yuan, Wei Huafeng, et al. Research progress on the role of transient receptor potential canonical 6 in ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 659-665. doi: 10.3969/j.issn.1674-7445.2022.05.017
Citation: Guo Wenwen, Yuan Yuan, Wei Huafeng, et al. Research progress on the role of transient receptor potential canonical 6 in ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 659-665. doi: 10.3969/j.issn.1674-7445.2022.05.017

Research progress on the role of transient receptor potential canonical 6 in ischemia-reperfusion injury

doi: 10.3969/j.issn.1674-7445.2022.05.017
More Information
  • Corresponding author: Lyu Xinghua, Email: ldyyrjsszx1214@163.com
  • Received Date: 2022-05-15
    Available Online: 2022-09-14
  • Publish Date: 2022-09-15
  • Ischemia-reperfusion injury (IRI) refers to the reperfusion injury caused by the recovery of blood supply of ischemic tissues or organs, which commonly occurs in organ transplantation and other surgical procedures. IRI may cause a series of severe clinical issues, such as delayed graft function, acute kidney injury, myocardial infarction, ischemic stroke and circulatory arrest, etc. These events yield high incidence and fatality. At present, no effective solution has been available. Transient receptor potential canonical 6 (TRPC6), a member of Ca2+ channel family, is highly expressed in multiple types of cells. It may adjust many physiological functions by regulating intracellular Ca2+ concentration, which has become an important target for developing therapeutic drugs for multiple diseases. In this article, research progresses on the introduction and function of TRPC6, the association between TRPC6 and IRI and the therapeutic prospect of TRPC6 targeted drugs in IRI were reviewed, aiming to provide novel insights into the prevention and treatment of IRI during organ transplantation

     

  • loading
  • [1]
    LIANG TY, PENG SY, MA M, et al. Protective effects of sevoflurane in cerebral ischemia reperfusion injury: a narrative review[J]. Med Gas Res, 2021, 11(4):152-154. DOI: 10.4103/2045-9912.318860.
    [2]
    KALOGERIS T, BAINES CP, KRENZ M, et al. Ischemia/reperfusion[J]. Compr Physiol, 2016, 7(1):113-170. DOI: 10.1002/cphy.c160006.
    [3]
    SHEKHAR S, LIU Y, WANG S, et al. Novel mechanistic insights and potential therapeutic impact of TRPC6 in neurovascular coupling and ischemic stroke[J]. Int J Mol Sci, 2021, 22(4):2074. DOI: 10.3390/ijms22042074.
    [4]
    SHEN B, ZHOU S, HE Y, et al. Revealing the underlying mechanism of ischemia reperfusion injury using bioinformatics approach[J]. Kidney Blood Press Res, 2013, 38(1):99-108. DOI: 10.1159/000355759.
    [5]
    TSAGARELI MG, NOZADZE I. An overview on transient receptor potential channels superfamily[J]. Behav Pharmacol, 2020, 31(5):413-434. DOI: 10.1097/FBP.0000000000000524.
    [6]
    KANEKO Y, SZALLASI A. Transient receptor potential (TRP) channels: a clinical perspective[J]. Br J Pharmacol, 2014, 171(10):2474-2507. DOI: 10.1111/bph.12414.
    [7]
    WANG H, CHENG X, TIAN J, et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes[J]. Pharmacol Ther, 2020, 209:107497. DOI: 10.1016/j.pharmthera.2020.107497.
    [8]
    WEBER EW, HAN F, TAUSEEF M, et al. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response[J]. J Exp Med, 2015, 212(11):1883-1899. DOI: 10.1084/jem.20150353.
    [9]
    LINDEMANN O, UMLAUF D, FRANK S, et al. TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils[J]. J Immunol, 2013, 190(11):5496-5505. DOI: 10.4049/jimmunol.1201502.
    [10]
    POLICHNOWSKI AJ, GRIFFIN KA, LICEA-VARGAS H, et al. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition[J]. Am J Physiol Renal Physiol, 2020, 318(5):F1086-F1099. DOI: 10.1152/ajprenal.00590.2019.
    [11]
    ZHONG H, SONG R, PANG Q, et al. Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro[J]. Cell Death Dis, 2018, 9(10):932. DOI: 10.1038/s41419-018-0996-9.
    [12]
    DRYER SE, ROSHANRAVAN H, KIM EY. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6):1041-1066. DOI: 10.1016/j.bbadis.2019.04.001.
    [13]
    SHEN B, HE Y, ZHOU S, et al. TRPC6 may protect renal ischemia-reperfusion injury through inhibiting necroptosis of renal tubular epithelial cells[J]. Med Sci Monit, 2016, 22:633-641. DOI: 10.12659/msm.897353.
    [14]
    HOU X, HUANG M, ZENG X, et al. The role of TRPC6 in renal ischemia/reperfusion and cellular hypoxia/reoxygenation injuries[J]. Front Mol Biosci, 2021, 8:698975. DOI: 10.3389/fmolb.2021.698975.
    [15]
    SHEN B, MEI M, PU Y, et al. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/miR-26a/TRPC6/PARP1 signaling[J]. Mol Ther Nucleic Acids, 2019, 17:701-713. DOI: 10.1016/j.omtn.2019.06.025.
    [16]
    PARADIES G, PARADIES V, RUGGIERO FM, et al. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection[J]. Am J Physiol Heart Circ Physiol, 2018, 315(5):H1341-H1352. DOI: 10.1152/ajpheart.00028.2018.
    [17]
    HE X, LI S, LIU B, et al. Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/reoxygenation injuries[J]. Proc Natl Acad Sci U S A, 2017, 114(23):E4582-E4591. DOI: 10.1073/pnas.1621384114.
    [18]
    YANG J, TANG L, ZHANG F, et al. Sevoflurane preconditioning promotes mesenchymal stem cells to relieve myocardial ischemia/reperfusion injury via TRPC6-induced angiogenesis[J]. Stem Cell Res Ther, 2021, 12(1):584. DOI: 10.1186/s13287-021-02649-3.
    [19]
    RAMEZ M, RAJABI H, RAMEZANI F, et al. The greater effect of high-intensity interval training versus moderate-intensity continuous training on cardioprotection against ischemia-reperfusion injury through Klotho levels and attenuate of myocardial TRPC6 expression[J]. BMC Cardiovasc Disord, 2019, 19(1):118. DOI: 10.1186/s12872-019-1090-7.
    [20]
    SUN B, OU H, REN F, et al. Propofol protects against cerebral ischemia/reperfusion injury by down-regulating long noncoding RNA SNHG14[J]. ACS Chem Neurosci, 2021, 12(16):3002-3014. DOI: 10.1021/acschemneuro.1c00059.
    [21]
    GUO C, MA Y, MA S, et al. The role of TRPC6 in the neuroprotection of calycosin against cerebral ischemic injury[J]. Sci Rep, 2017, 7(1):3039. DOI: 10.1038/s41598-017-03404-6.
    [22]
    LIU L, GU L, CHEN M, et al. Novel targets for stroke therapy: special focus on TRPC channels and TRPC6[J]. Front Aging Neurosci, 2020, 12:70. DOI: 10.3389/fnagi.2020.00070.
    [23]
    QUICK K, ZHAO J, EIJKELKAMP N, et al. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells[J]. Open Biol, 2012, 2(5):120068. DOI: 10.1098/rsob.120068.
    [24]
    LIU L, CHEN M, LIN K, et al. TRPC6 attenuates cortical astrocytic apoptosis and inflammation in cerebral ischemic/reperfusion injury[J]. Front Cell Dev Biol, 2021, 8:594283. DOI: 10.3389/fcell.2020.594283.
    [25]
    WANG J, SUN R, LI Z, et al. Combined bone marrow stromal cells and oxiracetam treatments ameliorates acute cerebral ischemia/reperfusion injury through TRPC6[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(8):767-777. DOI: 10.1093/abbs/gmz059.
    [26]
    LV JL, SHI LN, ZHAI CY, et al. Bag-1L protects against cell apoptosis in an in vitro model of lung ischemia-reperfusion injury through the C-terminal "bag" domain[J]. Biomed Res Int, 2021:8822807. DOI: 10.1155/2021/8822807.
    [27]
    DIETRICH A, STEINRITZ D, GUDERMANN T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases[J]. Cell Calcium, 2017, 67:123-137. DOI: 10.1016/j.ceca.2017.04.005.
    [28]
    WEISSMANN N, SYDYKOV A, KALWA H, et al. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice[J]. Nat Commun, 2012, 3:649. DOI: 10.1038/ncomms1660.
    [29]
    HÄFNER S, BURG F, KANNLER M, et al. A (+)-larixol congener with high affinity and subtype selectivity toward TRPC6[J]. Chem Med Chem, 2018, 13(10):1028-1035. DOI: 10.1002/cmdc.201800021.
    [30]
    WARREN EJ, ALLEN CN, BROWN RL, et al. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells[J]. Eur J Neurosci, 2006, 23(9):2477-2487. DOI: 10.1111/j.1460-9568.2006.04777.x.
    [31]
    WANG X, TENG L, LI A, et al. TRPC6 channel protects retinal ganglion cells in a rat model of retinal ischemia/reperfusion-induced cell death[J]. Invest Ophthalmol Vis Sci, 2010, 51(11):5751-5758. DOI: 10.1167/iovs.10-5451.
    [32]
    龚宇, 周蕙祯, 江泓, 等. 金丝桃素药理作用以及制备方法研究概况[J]. 中国民族民间医药, 2018, 27(15):37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MZMJ201815012.htm

    GONG Y, ZHOU HZ, JIANG H, et al. Review on pharmacological action and preparation of hypericin[J]. Chin J Ethnomed Ethnopharm, 2018, 27(15):37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MZMJ201815012.htm
    [33]
    YAO H, ZHANG Y, SHU H, et al. Hyperforin promotes post-stroke neuroangiogenesis via astrocytic IL-6-mediated negative immune regulation in the ischemic brain[J]. Front Cell Neurosci, 2019, 13:201. DOI: 10.3389/fncel.2019.00201.
    [34]
    LIN Y, ZHANG JC, FU J, et al. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation[J]. J Cereb Blood Flow Metab, 2013, 33(2):253-262. DOI: 10.1038/jcbfm.2012.164.
    [35]
    PRIKHODKO V, CHERNYUK D, SYSOEV Y, et al. Potential drug candidates to treat TRPC6 channel deficiencies in the pathophysiology of Alzheimer's disease and brain ischemia[J]. Cells, 2020, 9(11):2351. DOI: 10.3390/cells9112351.
    [36]
    LIN Y, CHEN F, ZHANG J, et al. Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways[J]. J Mol Neurosci, 2013, 50(3):504-513. DOI: 10.1007/s12031-013-9977-8.
    [37]
    汪雷, 胡火军, 马金阳, 等. 白藜芦醇对大鼠脑缺血再灌注损伤的作用[J]. 中国临床神经外科杂志, 2020, 25(5):303-307. DOI: 10.13798/j.issn.1009-153X.2020.05.015.

    WANG L, HU HJ, MA JY, et al. Role of cell autophagy in protection of resveratrol against cerebral ischemia-reperfusion injury in rats[J]. Chin J Clin Neurosurg, 2020, 25(5):303-307. DOI: 10.13798/j.issn.1009-153X.2020.05.015.
    [38]
    LI T, TAN Y, OUYANG S, et al. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis[J]. Gene, 2022, 808:145968. DOI: 10.1016/j.gene.2021.145968.
    [39]
    RODRIGO R, RETAMAL C, SCHUPPER D, et al. Antioxidant cardioprotection against reperfusion injury: potential therapeutic roles of resveratrol and quercetin[J]. Molecules, 2022, 27(8):2564. DOI: 10.3390/molecules27082564.
    [40]
    BILEN A, MERCANTEPE F, TÜMKAYA L, et al. The hepatoprotective potential of resveratrol in an experimental model of ruptured abdominal aortic aneurysm via oxidative stress and apoptosis[J]. J Biochem Mol Toxicol, 2021, 35(8):e22836. DOI: 10.1002/jbt.22836.
    [41]
    KARAKIŞI SO, HEMŞINLI D, TÜMKAYA L, et al. Resveratrol against lung injury in an ischemia/reperfusion model of abdominal aortic rupture[J]. Turk Gogus Kalp Damar Cerrahisi Derg, 2021, 29(3):330-338. DOI: 10.5606/tgkdc.dergisi.2021.21737.
    [42]
    JI K, LI Z, LEI Y, et al. Resveratrol attenuates retinal ganglion cell loss in a mouse model of retinal ischemia reperfusion injury via multiple pathways[J]. Exp Eye Res, 2021, 209:108683. DOI: 10.1016/j.exer.2021.108683.
    [43]
    ASLAN E, BOYACI MG, GÜZEL H, et al. Better neuroprotective profile of caffeic acid phenyl ester over resveratrol in non-traumatic ischemia-reperfusion injury of the spinal cord[J]. Br J Neurosurg, 2021, DOI: 10.1080/02688697.2021.1999391[Epubaheadofprint].
    [44]
    SALEHI B, MISHRA AP, NIGAM M, et al. Resveratrol: a double-edged sword in health benefits[J]. Biomedicines, 2018, 6(3):91. DOI: 10.3390/biomedicines6030091.
    [45]
    SAWAMURA S, HATANO M, TAKADA Y, et al. Screening of transient receptor potential canonical channel activators identifies novel neurotrophic piperazine compounds[J]. Mol Pharmacol, 2016, 89(3):348-363. DOI: 10.1124/mol.115.102863.
    [46]
    卢山, 郭自强, 刘丽华. 曲美他嗪治疗经皮冠状动脉介入术后心绞痛有效性和安全性的系统评价[J]. 中西医结合心脑血管病杂志, 2022, 20(10):1735-1740. DOI: 10.12102/j.issn.1672-1349.2022.10.003.

    LU S, GUO ZQ, LIU LH. Efficacy and safety of trimetazidine in angina after percutaneous coronary intervention:a systematic review[J]. Chin J Integr Med Cardio Cerebrovasc, 2022, 20(10):1735-1740. DOI: 10.12102/j.issn.1672-1349.2022.10.003.
    [47]
    CHEN X, LIN S, DAI S, et al. Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury[J]. Inflamm Res, 2022, 71(2):227-241. DOI: 10.1007/s00011-021-01530-6.
    [48]
    AMINI N, SARKAKI A, DIANAT M, et al. Naringin and trimetazidine improve baroreflex sensitivity and nucleus tractus solitarius electrical activity in renal ischemia-reperfusion injury[J]. Arq Bras Cardiol, 2021, 117(2):290-297. DOI: 10.36660/abc.20200121.
    [49]
    EMAM AM, SAAD MA, AHMED NA, et al. Vortioxetine mitigates neuronal damage by restricting PERK/eIF2α/ATF4/CHOP signaling pathway in rats subjected to focal cerebral ischemia-reperfusion[J]. Life Sci, 2021, 283:119865. DOI: 10.1016/j.lfs.2021.119865.
    [50]
    LEI Z, LUAN F, ZHANG X, et al. Piperazine ferulate protects against cardiac ischemia/reperfusion injury in rat via the suppression of NLRP3 inflammasome activation and pyroptosis[J]. Eur J Pharmacol, 2022, 920:174856. DOI: 10.1016/j.ejphar.2022.174856.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (199) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return