Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Shi Lang, Zhu Jiefu, Wu Xiongfei. Application progress of ischemic preconditioning in ischemia-reperfusion injury of renal allografts[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 653-658. doi: 10.3969/j.issn.1674-7445.2022.05.016
Citation: Shi Lang, Zhu Jiefu, Wu Xiongfei. Application progress of ischemic preconditioning in ischemia-reperfusion injury of renal allografts[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 653-658. doi: 10.3969/j.issn.1674-7445.2022.05.016

Application progress of ischemic preconditioning in ischemia-reperfusion injury of renal allografts

doi: 10.3969/j.issn.1674-7445.2022.05.016
More Information
  • Corresponding author: Wu Xiongfei, Email: wuxfei@126.com
  • Received Date: 2022-04-19
    Available Online: 2022-09-14
  • Publish Date: 2022-09-15
  • Kidney transplantation is more efficacious compared with other organ transplantations. Nevertheless, postoperative complications, such as renal ischemia-reperfusion injury (IRI), severely affect the survival rate and quality of life of recipients. How to mitigate the IRI of renal allografts has become one of the key topics in the field of kidney transplantation. At present, ischemic preconditioning enables renal allografts to adapt to ischemia, which is one of the effective methods to prevent the progression of IRI. However, the underlying mechanism remains elusive. In this article, the application of ischemic preconditioning in IRI, the regulation mechanism of ischemic preconditioning on the IRI of renal allografts at the cellular level and intracellular signaling pathway, and clinical application value and prospect of ischemic preconditioning were reviewed, aiming to provide reference for alleviating the IRI of renal allografts, enhancing the survival rate of the recipients and renal allografts and improving the quality of life of recipients.

     

  • loading
  • [1]
    吴国彬, 陈国栋. 肾脏常温机械灌注与无缺血肾移植[J]. 器官移植, 2022, 13(1): 32-37. DOI: 10.3969/j.issn.1674-7445.2022.01.005.

    WU GB, CHEN GD. Normothermic machine perfusion of kidney and ischemia-free kidney transplantation[J]. Organ Transplant, 2022, 13(1): 32-37. DOI: 10.3969/j.issn.1674-7445.2022.01.005.
    [2]
    PLOTNIKOV EY. Ischemic preconditioning of the kidney[J]. Bull Exp Biol Med, 2021, 171(5): 567-571. DOI: 10.1007/s10517-021-05270-9.
    [3]
    XUE J, ZHU K, CAO P, et al. Ischemic preconditioning-induced protective effect for promoting angiogenesis in renal ischemia-reperfusion injury by regulating miR-376c-3p/HIF-1α/VEGF axis in male rats[J]. Life Sci, 2022, 299: 120357. DOI: 10.1016/j.lfs.2022.120357.
    [4]
    TORRAS J, HERRERO-FRESNEDA I, LLOBERAS N, et al. Promising effects of ischemic preconditioning in renal transplantation[J]. Kidney Int, 2002, 61(6): 2218-2227. DOI: 10.1046/j.1523-1755.2002.00360.x.
    [5]
    BEHRENDS M, WALZ MK, KRIBBEN A, et al. No protection of the porcine kidney by ischaemic preconditioning[J]. Exp Physiol, 2000, 85(6): 819-827.
    [6]
    KOSIERADZKI M, AMETANI M, SOUTHARD JH, et al. Is ischemic preconditioning of the kidney clinically relevant?[J]. Surgery, 2003, 133(1): 81-90. DOI: 10.1067/msy.2003.93.
    [7]
    ORVIETO MA, ZORN KC, MENDIOLA FP, et al. Ischemia preconditioning does not confer resilience to warm ischemia in a solitary porcine kidney model[J]. Urology, 200769(5): 984-987. DOI: 10.1016/j.urology.2007.01.100.
    [8]
    WEVER KE, MENTING TP, ROVERS M, et al. Ischemic preconditioning in the animal kidney, a systematic review and Meta-analysis[J]. PLoS One, 2012, 7(2): e32296. DOI: 10.1371/journal.pone.0032296.
    [9]
    GIANNOPOULOS G, VRACHATIS DA, PANAGOPOULOU V, et al. Remote ischemic conditioning and renal protection[J]. J Cardiovasc Pharmacol Ther, 2017, 22(4): 321-329. DOI: 10.1177/1074248417702480.
    [10]
    ZARBOCK A, KELLUM JA, VAN AKEN H, et al. Long-term effects of remote ischemic preconditioning on kidney function in high-risk cardiac surgery patients: follow-up results from the renal RIP trial[J]. Anesthesiology, 2017, 126(5): 787-798. DOI: 10.1097/ALN.0000000000001598.
    [11]
    BANG JY, KIM SG, OH J, et al. Impact of remote ischemic preconditioning conducted in living kidney donors on renal function in donors and recipients following living donor kidney transplantation: a randomized clinical trial[J]. J Clin Med, 2019, 8(5): 713. DOI: 10.3390/jcm8050713.
    [12]
    MUT TT, ACAR Ö, ARMUTLU A, et al. Can remote ischemic preconditioning counteract the renal functional deterioration attributable to partial nephrectomy under warm ischemia? results of an animal study[J]. BMC Nephrol, 2021, 22(1): 266. DOI: 10.1186/s12882-021-02359-1.
    [13]
    WU J, FENG X, HUANG H, et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial[J]. J Surg Res, 2014, 188(1): 303-308. DOI: 10.1016/j.jss.2013.06.058.
    [14]
    KIM J, FRANKE WD, LANG JA. Delayed window of improvements in skin microvascular function following a single bout of remote ischaemic preconditioning[J]. Exp Physiol, 2021, 106(6): 1380-1388. DOI: 10.1113/EP089438.
    [15]
    XUE J, QIN Z, LI X, et al. Protective effects of ischemic preconditioning-mediated homing of endothelial progenitor cells on renal acute ischemia and reperfusion injury in male rats[J]. Ann Transplant, 2017, 22: 66-74. DOI: 10.12659/aot.901738.
    [16]
    LIU H, WU R, JIA RP, et al. Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury[J]. PLoS One, 2013, 8(1): e55389. DOI: 10.1371/journal.pone.0055389.
    [17]
    ZHU Y, ZHAO K, WANG L, et al. Erythropoietin preconditioning mobilizes endothelial progenitor cells to attenuate nephron-sparing surgery-induced ischemia-reperfusion injury[J]. Transplant Proc, 2020, 52(10): 2955-2963. DOI: 10.1016/j.transproceed.2020.05.008.
    [18]
    KADKHODAEE M, ARYAMANESH S, FAGHIHI M, et al. Protection of rat renal vitamin E levels by ischemic-preconditioning[J]. BMC Nephrol, 2004, 5: 6. DOI: 10.1186/1471-2369-5-6.
    [19]
    NIELSEN MB, RAVLO K, EIJKEN M, et al. Dynamics of circulating dendritic cells and cytokines after kidney transplantation-no effect of remote ischaemic conditioning[J]. Clin Exp Immunol, 2021, 206(2): 226-236. DOI: 10.1111/cei.13658.
    [20]
    LANGE TH, EIJKEN M, BAAN C, et al. Early immunological effects of ischemia-reperfusion injury: no modulation by ischemic preconditioning in a randomised crossover trial in healthy humans[J]. Int J Mol Sci, 2019, 20(12): 2877. DOI: 10.3390/ijms20122877.
    [21]
    SEDAGHAT Z, KADKHODAEE M, SEIFI B, et al. Inducible and endothelial nitric oxide synthase distribution and expression with hind limb per-conditioning of the rat kidney[J]. Arch Med Sci, 2019, 15(4): 1081-1091. DOI: 10.5114/aoms.2019.85651.
    [22]
    GHOLAMPOUR F, KHANGAH L, VATANPARAST J, et al. The role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat[J]. Iran J Basic Med Sci, 2018, 21(6): 600-606. DOI: 10.22038/IJBMS.2018.25810.6354.
    [23]
    YOON YE, CHOI KH, KIM SY, et al. Renoprotective mechanism of remote ischemic preconditioning based on transcriptomic analysis in a porcine renal ischemia reperfusion injury model[J]. PLoS One, 2015, 10(10): e0141099. DOI: 10.1371/journal.pone.0141099.
    [24]
    GERHARDT LMS, LIU J, KOPPITCH K, et al. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury[J]. Proc Natl Acad Sci U S A, 2021, 118(27): e2026684118. DOI: 10.1073/pnas.2026684118.
    [25]
    LEE K, GUSELLA GL, HE JC. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease[J]. Kidney Int, 2021, 100(1): 67-78. DOI: 10.1016/j.kint.2021.03.024.
    [26]
    MOONEN L, D'HAESE PC, VERVAET BA. Epithelial cell cycle behaviour in the injured kidney[J]. Int J Mol Sci, 2018, 19(7): 2038. DOI: 10.3390/ijms19072038.
    [27]
    KASHANI K, AL-KHAFAJI A, ARDILES T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25. DOI: 10.1186/cc12503.
    [28]
    EL MINSHAWY O, KHEDR MHS, YOUSSUF AM, et al. Value of the cell cycle arrest biomarkers in the diagnosis of pregnancy-related acute kidney injury[J]. Biosci Rep, 2021, 41(1): BSR20200962. DOI: 10.1042/BSR20200962.
    [29]
    LIVINGSTON MJ, WANG J, ZHOU J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys[J]. Autophagy, 2019, 15(12): 2142-2162. DOI: 10.1080/15548627.2019.1615822.
    [30]
    XIE Y, XIAO J, FU C, et al. Ischemic preconditioning promotes autophagy and alleviates renal ischemia/reperfusion injury[J]. Biomed Res Int, 2018: 8353987. DOI: 10.1155/2018/8353987.
    [31]
    WANG F, ZHANG G, XING T, et al. Renalase contributes to the renal protection of delayed ischaemic preconditioning via the regulation of hypoxia-inducible factor-1α[J]. J Cell Mol Med, 2015, 19(6): 1400-1409. DOI: 10.1111/jcmm.12527.
    [32]
    PASTEN C, HERRERA-LUNA Y, LOZANO M, et al. Glutathione S-transferase and clusterin, new players in the ischemic preconditioning renal protection in a murine model of ischemia and reperfusion[J]. Cell Physiol Biochem, 2021, 55(5): 635-650. DOI: 10.33594/000000442.
    [33]
    LIU Z, GONG R. Remote ischemic preconditioning for kidney protection: GSK3β-centric insights into the mechanism of action[J]. Am J Kidney Dis, 2015, 66(5): 846-856. DOI: 10.1053/j.ajkd.2015.06.026.
    [34]
    TOROSYAN R, HUANG S, BOMMI PV, et al. Hypoxic preconditioning protects against ischemic kidney injury through the IDO1/kynurenine pathway[J]. Cell Rep, 2021, 36(7): 109547. DOI: 10.1016/j.celrep.2021.109547.
    [35]
    LI JR, OU YC, WU CC, et al. Ischemic preconditioning improved renal ischemia/reperfusion injury and hyperglycemia[J]. IUBMB Life, 2019, 71(3): 321-329. DOI: 10.1002/iub.1972.
    [36]
    KHALID U, JENKINS RH, ANDREWS R, et al. Determination of a microRNA signature of protective kidney ischemic preconditioning originating from proximal tubulesa[J]. Sci Rep, 2021, 11(1): 9862. DOI: 10.1038/s41598-021-89195-3.
    [37]
    LI Z, DENG X, KANG Z, et al. Elevation of miR-21, through targeting MKK3, may be involved in ischemia pretreatment protection from ischemia-reperfusion induced kidney injury[J]. J Nephrol, 2016, 29(1): 27-36. DOI: 10.1007/s40620-015-0217-x.
    [38]
    GENG X, SONG N, ZHAO S, et al. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI[J]. Cell Death Discov, 2020, 6: 19. DOI: 10.1038/s41420-020-0253-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (297) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return