Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Bai Yang, Shi Jihua, Zhang Shuijun. Research progress on the role of programmed cell death in hepatic ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 647-652. doi: 10.3969/j.issn.1674-7445.2022.05.015
Citation: Bai Yang, Shi Jihua, Zhang Shuijun. Research progress on the role of programmed cell death in hepatic ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 647-652. doi: 10.3969/j.issn.1674-7445.2022.05.015

Research progress on the role of programmed cell death in hepatic ischemia-reperfusion injury

doi: 10.3969/j.issn.1674-7445.2022.05.015
More Information
  • Corresponding author: Zhang Shuijun, Email: zhangshuijun@zzu.edu.cn
  • Received Date: 2022-04-15
    Available Online: 2022-09-14
  • Publish Date: 2022-09-15
  • Liver transplantation is an effective treatment for the end-stage liver disease. However, hepatic ischemia-reperfusion injury (HIRI) will inevitably occur during liver transplantation, which might lead to early graft dysfunction or aggravate rejection. The underlying protective mechanism remains to be further elucidated. Programmed cell death is an important mechanism of HIRI, and multiple novel types of programmed cell death participate in the pathological process of HIRI. In-depth study of programmed cell death is expected to further improve the therapeutic effect of liver transplantation. In this article, research progresses on apoptosis, autophagy and autophagy-dependent cell death, ferroptosis, necroptosis, pyroptosis, pathanatos and other common programmed cell death patterns in HIRI were reviewed, aiming to provide reference for enhancing the success rate of liver transplantation and improving clinical prognosis of the recipients.

     

  • loading
  • [1]
    DE STEFANO N, NAVARRO-TABLEROS V, ROGGIO D, et al. Human liver stem cell-derived extracellular vesicles reduce injury in a model of normothermic machine perfusion of rat livers previously exposed to a prolonged warm ischemia[J]. Transpl Int, 2021, 34(9): 1607-1617. DOI: 10.1111/tri.13980.
    [2]
    LOZANOVSKI VJ, DÖHLER B, WEISS KH, et al. The differential influence of cold ischemia time on outcome after liver transplantation for different indications-who is at risk? a collaborative transplant study report[J]. Front Immunol, 2020, 11: 892. DOI: 10.3389/fimmu.2020.00892.
    [3]
    干晓杰, 古鉴, 吕凌. 血红素加氧酶-1与自噬在肝脏缺血-再灌注损伤中的研究进展[J]. 器官移植, 2020, 11(1): 110-114. DOI: 10.3969/j.issn.1674-7445.2020.01.018.

    GAN XJ, GU J, LYU L. Research progress of HO-1 and autophagy in hepatic ischemia-reperfusion injury[J]. Organ Transplant, 2020, 11(1): 110-114. DOI: 10.3969/j.issn.1674-7445.2020.01.018.
    [4]
    RODRIGUES MG, CASTRO PMV, ALMEIDA TC, et al. Impact of cold ischemia time on the function of liver grafts preserved with custodial[J]. Transplant Proc, 2021, 53(2): 661-664. DOI: 10.1016/j.transproceed.2020.03.002.
    [5]
    KERR JF, WYLLIE AH, CURRIE AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4): 239-257. DOI: 10.1038/bjc.1972.33.
    [6]
    WESTABY D, JIMENEZ-VACAS JM, PADILHA A, et al. Targeting the intrinsic apoptosis pathway: a window of opportunity for prostate cancer[J]. Cancers (Basel), 2021, 14(1): 51. DOI: 10.3390/cancers14010051.
    [7]
    KASHYAP D, GARG VK, GOEL N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021, 125: 73-120. DOI: 10.1016/bs.apcsb.2021.01.003.
    [8]
    LI K, VAN DELFT MF, DEWSON G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease[J]. EMBO J, 2021, 40(14): e107341. DOI: 10.15252/embj.2020107341.
    [9]
    FLUSBERG DA, SORGER PK. Surviving apoptosis: life-death signaling in single cells[J]. Trends Cell Biol, 2015, 25(8): 446-458. DOI: 10.1016/j.tcb.2015.03.003.
    [10]
    MAHDIZADEH SJ, THOMAS M, ERIKSSON LA. Reconstruction of the Fas-based death-inducing signaling complex (DISC) using a protein-protein docking Meta-approach[J]. J Chem Inf Model, 2021, 61(7): 3543-3558. DOI: 10.1021/acs.jcim.1c00301.
    [11]
    GUICCIARDI ME, MALHI H, MOTT JL, et al. Apoptosis and necrosis in the liver[J]. Compr Physiol, 2013, 3(2): 977-1010. DOI: 10.1002/cphy.c120020.
    [12]
    CURSIO R. Caspase inhibition in liver transplantation: from basic research to clinical studies[J]. HPB (Oxford), 2010, 12(1): 1-3. DOI: 10.1111/j.1477-2574.2009.00123.x.
    [13]
    JI H, ZHANG Y, SHEN XD, et al. Neuropeptide PACAP in mouse liver ischemia and reperfusion injury: immunomodulation by the cAMP-PKA pathway[J]. Hepatology, 2013, 57(3): 1225-1237. DOI: 10.1002/hep.25802.
    [14]
    GÓMEZ-GAVARA C, MOYA-HERRAIZ Á, HERVÁS D, et al. The potential role of efficacy and safety evaluation of N-acetylcysteine administration during liver procurement. the NAC-400 single center randomized controlled trial[J]. Transplantation, 2021, 105(10): 2245-2254. DOI: 10.1097/TP.0000000000003487.
    [15]
    DE DUVE C. The lysosome[J]. Sci Am, 1963, 208: 64-72. DOI: 10.1038/scientificamerican0563-64.
    [16]
    TAKESHIGE K, BABA M, TSUBOI S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J]. J Cell Biol, 1992, 119(2): 301-311. DOI: 10.1083/jcb.119.2.301.
    [17]
    KLIONSKY DJ, PETRONI G, AMARAVADI RK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. DOI: 10.15252/embj.2021108863.
    [18]
    LEVINE B, KROEMER G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42. DOI: 10.1016/j.cell.2018.09.048.
    [19]
    LŐRINCZ P, JUHÁSZ G. Autophagosome-lysosome fusion[J]. J Mol Biol, 2020, 432(8): 2462-2482. DOI: 10.1016/j.jmb.2019.10.028.
    [20]
    LIN PW, CHU ML, LIU HS. Autophagy and metabolism[J]. Kaohsiung J Med Sci, 2021, 37(1): 12-19. DOI: 10.1002/kjm2.12299.
    [21]
    FANG H, LIU A, DAHMEN U, et al. Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase[J]. Cell Death Dis, 2013, 4(6): e694. DOI: 10.1038/cddis.2013.225.
    [22]
    LEI Z, DENG M, YI Z, et al. cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 314(6): G655-G667. DOI: 10.1152/ajpgi.00326.2017.
    [23]
    ZHENG J, CHEN L, LU T, et al. MSCs ameliorate hepatocellular apoptosis mediated by PINK1-dependent mitophagy in liver ischemia/reperfusion injury through AMPKα activation[J]. Cell Death Dis, 2020, 11(4): 256. DOI: 10.1038/s41419-020-2424-1.
    [24]
    WANG M, YUAN F, BAI H, et al. SHMT2 promotes liver regeneration through glycine-activated Akt/mTOR pathway[J]. Transplantation, 2019, 103(7): e188-e197. DOI: 10.1097/TP.0000000000002747.
    [25]
    CURSIO R, COLOSETTI P, GUGENHEIM J. Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015: 417590. DOI: 10.1155/2015/417590.
    [26]
    XU H, BERENDSEN T, KIM K, et al. Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia[J]. J Surg Res, 2012, 173(2): e83-e88. DOI: 10.1016/j.jss.2011.09.057.
    [27]
    DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
    [28]
    ZHENG J, CONRAD M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937. DOI: 10.1016/j.cmet.2020.10.011.
    [29]
    YAMADA N, KARASAWA T, WAKIYA T, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis[J]. Am J Transplant, 2020, 20(6): 1606-1618. DOI: 10.1111/ajt.15773.
    [30]
    DEGTEREV A, HUANG Z, BOYCE M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112-119. DOI: 10.1038/nchembio711.
    [31]
    XUE C, GU X, LI G, et al. Mitochondrial mechanisms of necroptosis in liver diseases[J]. Int J Mol Sci, 2020, 22(1): 66. DOI: 10.3390/ijms22010066.
    [32]
    ZHONG W, WANG X, RAO Z, et al. Aging aggravated liver ischemia and reperfusion injury by promoting hepatocyte necroptosis in an endoplasmic reticulum stress-dependent manner[J]. Ann Transl Med, 2020, 8(14): 869. DOI: 10.21037/atm-20-2822.
    [33]
    LIN J, KUMARI S, KIM C, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation[J]. Nature, 2016, 540(7631): 124-128. DOI: 10.1038/nature20558.
    [34]
    YANG F, SHANG L, WANG S, et al. TNFα-mediated necroptosis aggravates ischemia-reperfusion injury in the fatty liver by regulating the inflammatory response. [J] Oxid Med Cell Longev, 2019: 2301903. DOI: 10.1155/2019/2301903.
    [35]
    BRENNAN MA, COOKSON BT. Salmonella induces macrophage death by caspase-1-dependent necrosis[J]. Mol Microbiol, 2000, 38(1): 31-40. DOI: 10.1046/j.1365-2958.2000.02103.x.
    [36]
    KNORR J, WREE A, FELDSTEIN AE. Pyroptosis in steatohepatitis and liver diseases[J]. J Mol Biol, 2022, 434(4): 167271. DOI: 10.1016/j.jmb.2021.167271.
    [37]
    WANG Y, ZHANG H, CHEN Q, et al. TNF-α/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury[J]. Cell Prolif, 2020, 53(6): e12829. DOI: 10.1111/cpr.12829.
    [38]
    胡莎莎, 刘钰, 王朝阳, 等. HMGB1/Caspase-1/GSDMD信号轴介导肝细胞焦亡在肝脏缺血-再灌注损伤中的作用[J]. 器官移植, 2022, 13(1): 88-97. DOI: 10.3969/j.issn.1674-7445.2022.01.014.

    HU SS, LIU Y, WANG CY, et al. Effect of HMGB1/Caspase-1/GSDMD signaling axis-mediated hepatocyte pyroptosis on liver ischemia-reperfusion injury[J]. Organ Transplant, 2022, 13(1): 88-97. DOI: 10.3969/j.issn.1674-7445.2022.01.014.
    [39]
    ZHANG L, LIU H, JIA L, et al. Exosomes mediate hippocampal and cortical neuronal injury induced by hepatic ischemia-reperfusion injury through activating pyroptosis in rats[J]. Oxid Med Cell Longev, 2019: 3753485. DOI: 10.1155/2019/3753485.
    [40]
    FAGENSON AM, XU K, SAAOUD F, et al. Liver ischemia reperfusion injury, enhanced by trained immunity, is attenuated in Caspase 1/Caspase 11 double gene knockout mice[J]. Pathogens, 2020, 9(11): 879. DOI: 10.3390/pathogens9110879.
    [41]
    HUA S, MA M, FEI X, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis[J]. Int Immunopharmacol, 2019, 68: 145-155. DOI: 10.1016/j.intimp.2019.01.002.
    [42]
    DAVID KK, ANDRABI SA, DAWSON TM, et al. Parthanatos, a messenger of death[J]. Front Biosci (Landmark Ed), 2009, 14(3): 1116-1128. DOI: 10.2741/3297.
    [43]
    KOEHLER RC, DAWSON VL, DAWSON TM. Targeting parthanatos in ischemic stroke[J]. Front Neurol, 2021, 12: 662034. DOI: 10.3389/fneur.2021.662034.
    [44]
    HAGA S, KANNO A, MORITA N, et al. Poly(ADP-ribose) polymerase (PARP) is critically involved in liver ischemia/reperfusion-injury[J]. J Surg Res, 2022, 270: 124-138. DOI: 10.1016/j.jss.2021.09.008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (358) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return