Volume 13 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Wei Aiping, Song Yaqin, Zhou Xiuying, et al. Major molecular events of reactivation of human cytomegalovirus after allogeneic hematopoietic stem cell transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 522-529. doi: 10.3969/j.issn.1674-7445.2022.04.017
Citation: Wei Aiping, Song Yaqin, Zhou Xiuying, et al. Major molecular events of reactivation of human cytomegalovirus after allogeneic hematopoietic stem cell transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 522-529. doi: 10.3969/j.issn.1674-7445.2022.04.017

Major molecular events of reactivation of human cytomegalovirus after allogeneic hematopoietic stem cell transplantation

doi: 10.3969/j.issn.1674-7445.2022.04.017
More Information
  • Corresponding author: Xie Zhengjun, zhj_xie@hotmail.com
  • Received Date: 2022-02-06
    Available Online: 2022-07-14
  • Publish Date: 2022-07-15
  • Immune deficiency of the host caused by allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the initial factor of reactivation of latent human cytomegalovirus (HCMV). The risk factors of reactivation of HCMV in allo-HSCT recipients consist of the serological status of HCMV in donors and recipients, the matching degree of human leukocyte antigen (HLA) and pretreatment patterns, etc. The reactivation of HCMV is associated with the expression of a series of viral cleavage and proliferation proteins induced by the overexpression of major immediate early promoter/enhancer (MIEP) in the viral genome. In this article, the risk factors of reactivation of HCMV after allo-HSCT, the molecular changes related to maintaining latent infection of HCMV, the key role of MIEP overexpression in reactivation of HCMV, and the molecular pathways involved in reactivation of HCMV after allo-HSCT were reviewed and the major molecular events of reactivation of HCMV after allo-HSCT were elucidated, aiming to provide reference for the prevention and treatment of cytomegaloviral disease (CMVD) after allo-HSCT.

     

  • loading
  • [1]
    YONG MK, ANANDA-RAJAH M, CAMERON PU, et al. Cytomegalovirus reactivation is associated with increased risk of late-onset invasive fungal disease after allogeneic hematopoietic stem cell transplantation: a multicenter study in the current era of viral load monitoring[J]. Biol Blood Marrow Transplant, 2017, 23(11): 1961-1967. DOI: 10.1016/j.bbmt.2017.07.025.
    [2]
    KIMURA SI, TAMAKI M, OKINAKA K, et al. Cytomegalovirus reactivation is associated with an increased risk of late-onset invasive aspergillosis independently of grade Ⅱ-IV acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation: JSTCT Transplant Complications Working Group[J]. Ann Hematol, 2021, 100(12): 3029-3038. DOI: 10.1007/s00277-021-04660-3.
    [3]
    DUKE ER, WILLIAMSON BD, BORATE B, et al. CMV viral load kinetics as surrogate endpoints after allogeneic transplantation[J]. J Clin Invest, 2021, 131(1): e133960. DOI: 10.1172/JCI133960.
    [4]
    NAGAI S, MANGUS RS, ANDERSON E, et al. Cytomegalovirus infection after intestinal/multivisceral transplantation: a single-center experience with 210 cases[J]. Transplantation, 2016, 100(2): 451-460. DOI: 10.1097/TP.0000000000000832.
    [5]
    NATORI Y, HUMAR A, HUSAIN S, et al. Recurrence of CMV infection and the effect of prolonged antivirals in organ transplant recipients[J]. Transplantation, 2017, 101(6): 1449-1454. DOI: 10.1097/TP.0000000000001338.
    [6]
    ZHOU X, JIN N, CHEN B. Human cytomegalovirus infection: a considerable issue following allogeneic hematopoietic stem cell transplantation[J]. Oncol Lett, 2021, 21(4): 318. DOI: 10.3892/ol.2021.12579.
    [7]
    SCHMIDT-HIEBER M, TRIDELLO G, LJUNGMAN P, et al. The prognostic impact of the cytomegalovirus serostatus in patients with chronic hematological malignancies after allogeneic hematopoietic stem cell transplantation: a report from the Infectious Diseases Working Party of EBMT[J]. Ann Hematol, 2019, 98(7): 1755-1763. DOI: 10.1007/s00277-019-03669-z.
    [8]
    刘静, 付强, 王昱, 等. 供者巨细胞病毒血清学阴性状态对异基因造血干细胞移植患者预后影响的临床分析[J]. 中华内科杂志, 2021, 60(5): 459-465. DOI: 10.3760/cma.j.cn112138-20200714-00668.

    LIU J, FU Q, WANG Y, et al. The effect of donor cytomegalovirus serological status on the outcome of allogeneic stem cell transplantation[J]. Chin J Inter Med, 2021, 60(5): 459-465. DOI: 10.3760/cma.j.cn112138-20200714-00668.
    [9]
    MELENDEZ-MUNOZ R, MARCHALIK R, JERUSSI T, et al. Cytomegalovirus infection incidence and risk factors across diverse hematopoietic cell transplantation platforms using a standardized monitoring and treatment approach: a comprehensive evaluation from a single institution[J]. Biol Blood Marrow Transplant, 2019, 25(3): 577-586. DOI: 10.1016/j.bbmt.2018.10.011.
    [10]
    PEFFAULT DE LATOUR R, CHEVALLIER P, BLAISE D, et al. Clinical and economic impact of treated CMV infection in adult CMV-seropositive patients after allogeneic hematopoietic cell transplantation[J]. J Med Virol, 2020, DOI: 10.1002/jmv.25895[Epubaheadofprint].
    [11]
    薛慧, 胡永超, 冯术青, 等. 外周血异基因干细胞移植后巨细胞病毒感染的危险因素分析[J]. 中国医科大学学报, 2019, 48(5): 417-420. DOI: 10.12007/j.issn.0258-4646.2019.05.009.

    XUE H, HU YC, FENG SQ, et al. Risk factor analysis for cytomegalovirus infection after peripheral blood allogeneic hematopoietic stem cell transplantation[J]. J China Med Univ, 2019, 48(5): 417-420. DOI: 10.12007/j.issn.0258-4646.2019.05.009.
    [12]
    GHOBADI A, MILTON DR, GOWDA L, et al. HLA-DP mismatch and CMV reactivation increase risk of aGVHD independently in recipients of allogeneic stem cell transplant[J]. Curr Res Transl Med, 2019, 67(2): 51-55. DOI: 10.1016/j.retram.2019.01.001.
    [13]
    MARCHESI F, PIMPINELLI F, DI DOMENICO EG, et al. Association between CMV and invasive fungal infections after autologous stem cell transplant in lymphoproliferative malignancies: opportunistic partnership or cause-effect relationship?[J]. Int J Mol Sci, 2019, 20(6): 1373. DOI: 10.3390/ijms20061373.
    [14]
    BUEHLER J, ZELTZER S, REITSMA J, et al. Opposing regulation of the EGF receptor: a molecular switch controlling cytomegalovirus latency and replication[J]. PLoS Pathog, 2016, 12(5): e1005655. DOI: 10.1371/journal.ppat.1005655.
    [15]
    MURATA M, IKEGAME K, MORISHITA Y, et al. Low-dose thymoglobulin as second-line treatment for steroid-resistant acute GVHD: an analysis of the JSHCT[J]. Bone Marrow Transplant, 2017, 52(2): 252-257. DOI: 10.1038/bmt.2016.247.
    [16]
    KRISHNA BA, POOLE EL, JACKSON SE, et al. Latency-associated expression of human cytomegalovirus US28 attenuates cell signaling pathways to maintain latent infection[J]. mBio, 2017, 8(6): e01754-17. DOI: 10.1128/mBio.01754-17.
    [17]
    KRISHNA BA, SPIESS K, POOLE EL, et al. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein[J]. Nat Commun, 2017, 8: 14321. DOI: 10.1038/ncomms14321.
    [18]
    KRISHNA BA, WASS AB, O'CONNOR CM. Activator protein-1 transactivation of the major immediate early locus is a determinant of cytomegalovirus reactivation from latency[J]. Proc Natl Acad Sci U S A, 2020, 117(34): 20860-20867. DOI: 10.1073/pnas.2009420117.
    [19]
    GOODRUM F. Human cytomegalovirus latency: approaching the gordian knot[J]. Annu Rev Virol, 2016, 3(1): 333-357. DOI: 10.1146/annurev-virology-110615-042422.
    [20]
    COLLINS-MCMILLEN D, BUEHLER J, PEPPENELLI M, et al. Molecular determinants and the regulation of human cytomegalovirus latency and reactivation[J]. Viruses, 2018, 10(8): 444. DOI: 10.3390/v10080444.
    [21]
    MERCHUT-MAYA JM, BARTEK J JR, BARTKOVA J, et al. Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability[J]. Cell Death Differ, 2022, DOI: 10.1038/s41418-022-00953-w[Epubaheadofprint].
    [22]
    ADAMSON CS, NEVELS MM. Bright and early: inhibiting human cytomegalovirus by targeting major immediate-early gene expression or protein function[J]. Viruses, 2020, 12(1): 110. DOI: 10.3390/v12010110.
    [23]
    AREND KC, LENARCIC EM, MOORMAN NJ. The 5' untranslated region of the major immediate early mRNA is necessary for efficient human cytomegalovirus replication[J]. J Virol, 2018, 92(7): e02128-17. DOI: 10.1128/JVI.02128-17.
    [24]
    DOOLEY AL, O'CONNOR CM. Regulation of the MIE locus during HCMV latency and reactivation[J]. Pathogens, 2020, 9(11): 869. DOI: 10.3390/pathogens9110869.
    [25]
    COLLINS-MCMILLEN D, RAK M, BUEHLER JC, et al. Alternative promoters drive human cytomegalovirus reactivation from latency[J]. Proc Natl Acad Sci U S A, 2019, 116(35): 17492-17497. DOI: 10.1073/pnas.1900783116.
    [26]
    AREND KC, ZIEHR B, VINCENT HA, et al. Multiple transcripts encode full-length human cytomegalovirus IE1 and IE2 proteins during lytic infection[J]. J Virol, 2016, 90(19): 8855-8865. DOI: 10.1128/JVI.00741-16.
    [27]
    LIU XF, JIE C, ZHANG Z, et al. Transplant-induced reactivation of murine cytomegalovirus immediate early gene expression is associated with recruitment of NF-κB and AP-1 to the major immediate early promoter[J]. J Gen Virol, 2016, 97(4): 941-954. DOI: 10.1099/jgv.0.000407.
    [28]
    DUPONT L, DU L, POULTER M, et al. Src family kinase activity drives cytomegalovirus reactivation by recruiting MOZ histone acetyltransferase activity to the viral promoter[J]. J Biol Chem, 2019, 294(35): 12901-12910. DOI: 10.1074/jbc.RA119.009667.
    [29]
    GROVES IJ, JACKSON SE, POOLE EL, et al. Bromodomain proteins regulate human cytomegalovirus latency and reactivation allowing epigenetic therapeutic intervention[J]. Proc Natl Acad Sci U S A, 2021, 118(9): e2023025118. DOI: 10.1073/pnas.2023025118.
    [30]
    GROVES IJ, SINCLAIR JH, WILLS MR. Bromodomain inhibitors as therapeutics for herpesvirus-related disease: all BETs are off?[J]. Front Cell Infect Microbiol, 2020, 10: 329. DOI: 10.3389/fcimb.2020.00329.
    [31]
    FORTE E, ZHANG Z, THORP EB, et al. Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response[J]. Front Cell Infect Microbiol, 2020, 10: 130. DOI: 10.3389/fcimb.2020.00130.
    [32]
    DAĞ F, DÖLKEN L, HOLZKI J, et al. Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency[J]. PLoS Pathog, 2014, 10(2): e1003962. DOI: 10.1371/journal.ppat.1003962.
    [33]
    FORTE E, SWAMINATHAN S, SCHROEDER MW, et al. Tumor necrosis factor alpha induces reactivation of human cytomegalovirus independently of myeloid cell differentiation following posttranscriptional establishment of latency[J]. mBio, 2018, 9(5): e01560-18. DOI: 10.1128/mBio.01560-18.
    [34]
    CHEN T, ZHANG X, ZHU G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro[J]. Medicine (Baltimore), 2020, 99(38): e22241. DOI: 10.1097/MD.0000000000022241.
    [35]
    REN J, SU D, LI L, et al. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways[J]. Toxicol Appl Pharmacol, 2020, 387: 114846. DOI: 10.1016/j.taap.2019.114846.
    [36]
    SANJEEWA KKA, NAGAHAWATTA DP, YANG HW, et al. Octominin inhibits LPS-induced chemokine and pro-inflammatory cytokine secretion from RAW 264.7 macrophages via blocking TLRs/NF-κB signal transduction[J]. Biomolecules, 2020, 10(4): 511. DOI: 10.3390/biom10040511.
    [37]
    CHENG S, CAVINESS K, BUEHLER J, et al. Transcriptome-wide characterization of human cytomegalovirus in natural infection and experimental latency[J]. Proc Natl Acad Sci U S A, 2017, 114(49): E10586-E10595. DOI: 10.1073/pnas.1710522114.
    [38]
    WEEKES MP, TAN SY, POOLE E, et al. Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection[J]. Science, 2013, 340(6129): 199-202. DOI: 10.1126/science.1235047.
    [39]
    BUEHLER J, CARPENTER E, ZELTZER S, et al. Host signaling and EGR1 transcriptional control of human cytomegalovirus replication and latency[J]. PLoS Pathog, 2019, 15(11): e1008037. DOI: 10.1371/journal.ppat.1008037.
    [40]
    FRUMAN DA, CHIU H, HOPKINS BD, et al The PI3K pathway in human disease[J]. Cell, 2017, 170(4): 605-635. DOI: 10.1016/j.cell.2017.07.029.
    [41]
    DE SANTIS MC, GULLUNI F, CAMPA CC, et al. Targeting PI3K signaling in cancer: challenges and advances[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 361-366. DOI: 10.1016/j.bbcan.2019.03.003.
    [42]
    XIANG K, WANG B. Role of the PI3K-Akt-mTOR pathway in hepatitis B virus infection and replication[J]. Mol Med Rep, 2018, 17(3): 4713-4719. DOI: 10.3892/mmr.2018.8395.
    [43]
    MIKELL I, CRAWFORD LB, HANCOCK MH, et al. HCMV miR-US22 down-regulation of EGR-1 regulates CD34+ hematopoietic progenitor cell proliferation and viral reactivation[J]. PLoS Pathog, 2019, 15(11): e1007854. DOI: 10.1371/journal.ppat.1007854.
    [44]
    RAK MA, BUEHLER J, ZELTZER S, et al. Human cytomegalovirus UL135 interacts with host adaptor proteins to regulate epidermal growth factor receptor and reactivation from latency[J]. J Virol, 2018, 92(20): e00919-18. DOI: 10.1128/JVI.00919-18.
    [45]
    COHEN JI. Herpesviruses in the activated phosphatidylinositol-3-kinase-δ syndrome[J]. Front Immunol, 2018, 9: 237. DOI: 10.3389/fimmu.2018.00237.
    [46]
    ZHANG Z, YAO L, YANG J, et al. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (review)[J]. Mol Med Rep, 2018, 18(4): 3547-3554. DOI: 10.3892/mmr.2018.9375.
    [47]
    SAMAKOVA A, GAZOVA A, SABOVA N, et al. The PI3K/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia[J]. Physiol Res, 2019, 68(Suppl 2): S131-S138. DOI: 10.33549/physiolres.934345.
    [48]
    CHEN S, GAO R, KOBAYASHI M, et al. Pharmacological inhibition of Akt activity in human CD34+ cells enhances their ability to engraft immunodeficient mice[J]. Exp Hematol, 2017, 45: 74-84. DOI: 10.1016/j.exphem.2016.09.003.
    [49]
    XU YJ, CHEN FP, CHEN Y, et al. A possible reason to induce acute graft-vs. -host disease after hematopoietic stem cell transplantation: lack of sirtuin-1 in CD4+ T cells[J]. Front Immunol, 2018, 9: 3078. DOI: 10.3389/fimmu.2018.03078.
    [50]
    JOHNSON RA, WANG X, MA XL, et al. Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling[J]. J Virol, 2001, 75(13): 6022-6032. DOI: 10.1128/JVI.75.13.6022-6032.2001.
    [51]
    RAO VK, WEBSTER S, DALM VASH, et al. Effective "activated PI3Kδ syndrome"-targeted therapy with the PI3Kδ inhibitor leniolisib[J]. Blood, 2017, 130(21): 2307-2316. DOI: 10.1182/blood-2017-08-801191.
    [52]
    YOSHITOMI Y, IKEDA T, SAITO-TAKATSUJI H, et al. Emerging role of AP-1 transcription factor JunB in angiogenesis and vascular development[J]. Int J Mol Sci, 2021, 22(6): 2804. DOI: 10.3390/ijms22062804.
    [53]
    WANG L, XUE Y, MA H, et al. Prazosin protects myocardial cells against anoxia-reoxygenation injury via the extracellular signal-regulated kinase signaling pathway[J]. Mol Med Rep, 2018, 17(2): 2145-2152. DOI: 10.3892/mmr.2017.8175.
    [54]
    CHENG WH, CHEN CL, CHEN JY, et al. Hypoxia-induced preadipocyte factor 1 expression in human lung fibroblasts through ERK/PEA3/c-Jun pathway[J]. Mol Med, 2021, 27(1): 69. DOI: 10.1186/s10020-021-00336-w.
    [55]
    KELLER MJ, WU AW, ANDREWS JI, et al. Reversal of human cytomegalovirus major immediate-early enhancer/promoter silencing in quiescently infected cells via the cyclic AMP signaling pathway[J]. J Virol, 2007, 81(12): 6669-6681. DOI: 10.1128/JVI.01524-06.
    [56]
    DAVIS-POYNTER N, FARRELL HE. Constitutive signaling by the human cytomegalovirus G protein coupled receptor homologs US28 and UL33 enables trophoblast migration in vitro[J]. Viruses, 2022, 14(2): 391. DOI: 10.3390/v14020391.
    [57]
    KRISHNA BA, WASS AB, DOOLEY AL, et al. CMV-encoded GPCR pUL33 activates CREB and facilitates its recruitment to the MIE locus for efficient viral reactivation[J]. J Cell Sci, 2021, 134(5): jcs254268. DOI: 10.1242/jcs.254268.
    [58]
    LE-TRILLING VTK, WOHLGEMUTH K, RÜCKBORN MU, et al. STAT2-dependent immune responses ensure host survival despite the presence of a potent viral antagonist[J]. J Virol, 2018, 92(14): e00296-18. DOI: 10.1128/JVI.00296-18.
    [59]
    IBRAHIM MK, KHEDR A, BADER EL DIN NG, et al. Increased incidence of cytomegalovirus coinfection in HCV-infected patients with late liver fibrosis is associated with dysregulation of JAK-STAT pathway[J]. Sci Rep, 2017, 7(1): 10364. DOI: 10.1038/s41598-017-10604-7.
    [60]
    CHANG Z, WANG Y, ZHOU X, et al. STAT3 roles in viral infection: antiviral or proviral?[J]. Future Virol, 2018, 13(8): 557-574. DOI: 10.2217/fvl-2018-0033.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (430) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return