Volume 12 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Song Wei, Sun Liying, Zhu Zhijun, et al. Effect of liver transplantation on intestinal microflora in children with biliary atresia[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 692-699. doi: 10.3969/j.issn.1674-7445.2021.06.008
Citation: Song Wei, Sun Liying, Zhu Zhijun, et al. Effect of liver transplantation on intestinal microflora in children with biliary atresia[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 692-699. doi: 10.3969/j.issn.1674-7445.2021.06.008

Effect of liver transplantation on intestinal microflora in children with biliary atresia

doi: 10.3969/j.issn.1674-7445.2021.06.008
More Information
  • Corresponding author: Sun Liying, Email: sunxlx@outlook.com
  • Received Date: 2021-08-26
  • Publish Date: 2021-11-15
  •   Objective  To evaluate the effect of liver transplantation on intestinal microflora in children with biliary atresia.  Methods  The fecal samples and liver function indexes of 16 children with biliary atresia before and 6 months after liver transplantation were collected, and 10 healthy children were selected as the healthy controls. DNA extraction and metagenome sequencing were carried out in the fecal samples. Statistical analysis was performed by software packages, such as R language. The changes of species structure and functional composition of intestinal microflora after liver transplantation were analyzed. The recovery of intestinal microflora in children with biliary atresia after liver transplantation was assessed. The relationship between intestinal microflora and liver function indexes was investigated.  Results  Following liver transplantation, the number of species of intestinal microflora in children with biliary atresia was increased. The opportunistic pathogens were the dominant species of intestinal microflora in children with biliary atresia before liver transplantation. The abundance of opportunistic pathogens was decreased and the abundance of short-chain fatty acid-producing bacteria was increased after liver transplantation (all P < 0.05). Following liver transplantation, lipid metabolism, amino acid metabolism, carbohydrate metabolism, energy metabolism, metabolism of cofactors and vitamins were enhanced, whereas infectious diseases of bacterial, immune diseases and drug resistance were weakened. Compared with the healthy control group, there were no statistically significant differences in the diversity and structure of intestinal microflora in the post-liver transplant group, but different species were observed between two groups. The liver function indexes of children with biliary atresia after liver transplantation tended to decline (all P < 0.000 1). The abundance of beneficial intestinal microflora was negatively correlated with liver function indexes, whereas the abundance of opportunistic pathogens was positively correlated with liver function indexes (all P < 0.05).  Conclusions  Liver transplantation may significantly improve the structure and functional composition of intestinal microflora in children with biliary atresia.

     

  • loading
  • [1]
    殷润开, 赵瑞芹, 付海燕, 等. 肝功能相关指标诊断婴儿胆道闭锁的价值[J]. 实用医学杂志, 2021, 37(12): 1607-1612. DOI: 10.3969/j.issn.1006-5725.2021.12.019.

    YIN RK, ZHAO RQ, FU HY, et al. Value of liver function index in the diagnosis of biliary atresia in infants[J]. J Pract Med, 2021, 37(12): 1607-1612. DOI: 10.3969/j.issn.1006-5725.2021.12.019.
    [2]
    SOKOL RJ, SHEPHERD RW, SUPERINA R, et al. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop[J]. Hepatology, 2007, 46(2): 566-581. DOI: 10.1002/hep.21790.
    [3]
    SIDDIQUI AI, AHMAD T. Biliary atresia[M]. Treasure Island (FL): StatPearls, 2021.
    [4]
    KASAHARA M, UMESHITA K, SAKAMOTO S, et al. Liver transplantation for biliary atresia: a systematic review[J]. Pediatr Surg Int, 2017, 33(12): 1289-1295. DOI: 10.1007/s00383-017-4173-5.
    [5]
    WEI Y, LI Y, YAN L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69(3): 569-577. DOI: 10.1136/gutjnl-2018-317836.
    [6]
    HU H, LIN A, KONG M, et al. Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives[J]. J Gastroenterol, 2020, 55(2): 142-158. DOI: 10.1007/s00535-019-01649-8.
    [7]
    CASSARD AM, CIOCAN D. Microbiota, a key player in alcoholic liver disease[J]. Clin Mol Hepatol, 2018, 24(2): 100-107. DOI: 10.3350/cmh.2017.0067.
    [8]
    MILOSEVIC I, VUJOVIC A, BARAC A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci, 2019, 20(2): 395. DOI: 10.3390/ijms20020395.
    [9]
    MOHAJERI MH, BRUMMER RJM, RASTALL RA, et al. The role of the microbiome for human health: from basic science to clinical applications[J]. Eur J Nutr, 2018, 57(Suppl 1): 1-14. DOI: 10.1007/s00394-018-1703-4.
    [10]
    XING HC, LI LJ, XU KJ, et al. Protective role of supplement with foreign bifidobacterium and lactobacillus in experimental hepatic ischemia-reperfusion injury[J]. J Gastroenterol Hepatol, 2006, 21(4): 647-656. DOI: 10.1111/j.1440-1746.2006.04306.x.
    [11]
    ZHU B, WANG X, LI L. Human gut microbiome: the second genome of human body[J]. Protein Cell, 2010, 1(8): 718-725. DOI: 10.1007/s13238-010-0093-z.
    [12]
    WANG J, QIAN T, JIANG J, et al. Gut microbial profile in biliary atresia: a case-control study[J]. J Gastroenterol Hepatol, 2020, 35(2): 334-342. DOI: 10.1111/jgh.14777.
    [13]
    ASAI A, MIETHKE A, BEZERRA JA. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(6): 342-352. DOI: 10.1038/nrgastro.2015.74.
    [14]
    ZENG Y, CHEN S, FU Y, et al. Gut microbiota dysbiosis in patients with hepatitis B virus-induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma[J]. J Viral Hepat, 2020, 27(2): 143-155. DOI: 10.1111/jvh.13216.
    [15]
    LV LX, FANG DQ, SHI D, et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis[J]. Environ Microbiol, 2016, 18(7): 2272-2286. DOI: 10.1111/1462-2920.13401.
    [16]
    WENG MT, CHIU YT, WEI PY, et al. Microbiota and gastrointestinal cancer[J]. J Formos Med Assoc, 2019, 118(Suppl 1): S32-S41. DOI: 10.1016/j.jfma.2019.01.002.
    [17]
    TANG R, WEI Y, LI Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy[J]. Gut, 2018, 67(3): 534-541. DOI: 10.1136/gutjnl-2016-313332.
    [18]
    ABE K, FUJITA M, HAYASHI M, et al. Gut and oral microbiota in autoimmune liver disease[J]. Fukushima J Med Sci, 2020, 65(3): 71-75. DOI: 10.5387/fms.2019-21.
    [19]
    TRIPATHI A, DEBELIUS J, BRENNER DA, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. DOI: 10.1038/s41575-018-0011-z.
    [20]
    ISAACS-TEN A, ECHEANDIA M, MORENO-GONZALEZ M, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability in mice[J]. Hepatology, 2020, 72(6): 2090-2108. DOI: 10.1002/hep.31228.
    [21]
    YANG X, LU D, ZHUO J, et al. The gut-liver axis in immune remodeling: new insight into liver diseases[J]. Int J Biol Sci, 2020, 16(13): 2357-2366. DOI: 10.7150/ijbs.46405.
    [22]
    ISLAM KB, FUKIYA S, HAGIO M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology, 2011, 141(5): 1773-1781. DOI: 10.1053/j.gastro.2011.07.046.
    [23]
    LONG SL, GAHAN CGM, JOYCE SA. Interactions between gut bacteria and bile in health and disease[J]. Mol Aspects Med, 2017, 56: 54-65. DOI: 10.1016/j.mam.2017.06.002.
    [24]
    BAJAJ JS, FAGAN A, SIKAROODI M, et al. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis[J]. Liver Transpl, 2017, 23(7): 907-914. DOI: 10.1002/lt.24754.
    [25]
    BAJAJ JS, KAKIYAMA G, COX IJ, et al. Alterations in gut microbial function following liver transplant[J]. Liver Transpl, 2018, 24(6): 752-761. DOI: 10.1002/lt.25046.
    [26]
    NORVELL JP. Spotlight on impactful research: impact of liver transplantation on gut microbiota and cognitive function[J]. Clin Liver Dis (Hoboken), 2019, 13(3): 72-73. DOI: 10.1002/cld.746.
    [27]
    PILLAI AA, LEVITSKY J. Overview of immunosuppression in liver transplantation[J]. World J Gastroenterol, 2009, 15(34): 4225-4233. DOI: 10.3748/wjg.15.4225.
    [28]
    SUN LY, YANG YS, QU W, et al. Gut microbiota of liver transplantation recipients[J]. Sci Rep, 2017, 7(1): 3762. DOI: 10.1038/s41598-017-03476-4.
    [29]
    ZHANG J, REN FG, LIU P, et al. Characteristics of fecal microbial communities in patients with non-anastomotic biliary strictures after liver transplantation[J]. World J Gastroenterol, 2017, 23(46): 8217-8226. DOI: 10.3748/wjg.v23.i46.8217.
    [30]
    HOLOTA Y, DOVBYNCHUK T, KAJI I, et al. The long-term consequences of antibiotic therapy: role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity[J]. PLoS One, 2019, 14(8): e0220642. DOI: 10.1371/journal.pone.0220642.
    [31]
    AGUS A, CLÉMENT K, SOKOL H. Gut microbiota-derived metabolites as central regulators in metabolic disorders[J]. Gut, 2021, 70(6): 1174-1182. DOI: 10.1136/gutjnl-2020-323071.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (223) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return