Volume 12 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Zheng Jin, Xue Wujun. Assessment and monitoring of immune risk of kidney transplantation rejection[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 643-650. doi: 10.3969/j.issn.1674-7445.2021.06.002
Citation: Zheng Jin, Xue Wujun. Assessment and monitoring of immune risk of kidney transplantation rejection[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 643-650. doi: 10.3969/j.issn.1674-7445.2021.06.002

Assessment and monitoring of immune risk of kidney transplantation rejection

doi: 10.3969/j.issn.1674-7445.2021.06.002
More Information
  • Corresponding author: Xue Wujun, Email: xwujun16@xjtu.edu.cn
  • Received Date: 2021-07-19
  • Publish Date: 2021-11-15
  • Kidney transplantation is the most efficacious treatment for end-stage renal failure. Although the shortterm survival and functional recovery of the kidney graft have been significantly improved, the long-term survival of the kidney graft remains to be enhanced. Antibody-mediated rejection (AMR) and T cell-mediated rejection (TCMR) caused by immune factors are still the most critical causes of kidney graft failure. In this article, the immune risk assessment and monitoring of kidney transplant recipients during the awaiting period, before and after kidney transplantation were reviewed. Through the evaluation of preexisting human leukocyte antigen (HLA) antibodies and non-HLA antibodies, HLA matching, lymphocytotoxicity cross-matching and immune memory cells in the recipients before kidney transplantation, programmed biopsy of the kidney graft of the recipients after kidney transplantation and monitoring of HLA antibodies, non-HLA antibodies and donor-derived cell-free DNA (dd-cfDNA), individualized immunosuppressive treatment and monitoring regimes could be established, and the incidence of rejection could be prevented, timely detected and diagnosed. According to the immune monitoring results, ineffective treatment or over-treatment could be avoided, thereby improving the long-term survival of kidney graft.

     

  • loading
  • [1]
    ALI AA, ALMUKHTAR SE, ABD KH, et al. The causes and frequency of kidney allograft failure in a low-resource setting: observational data from Iraqi Kurdistan[J]. BMC Nephrol, 2021, 22(1): 272. DOI: 10.1186/s12882-021-02486-9.
    [2]
    MILLÁN O, ROVIRA J, GUIRADO L, et al. Advantages of plasmatic CXCL-10 as a prognostic and diagnostic biomarker for the risk of rejection and subclinical rejection in kidney transplantation[J]. Clin Immunol, 2021, 229: 108792. DOI: 10.1016/j.clim.2021.108792.
    [3]
    CHOI J, CHANDRAKER A. Immunologic risk assessment and approach to immunosuppression regimen in kidney transplantation[J]. Clin Lab Med, 2019, 39(4): 643-656. DOI: 10.1016/j.cll.2019.07.010.
    [4]
    LAN JH, KADATZ M, CHANG DT, et al. Pretransplant calculated panel reactive antibody in the absence of donor-specific antibody and kidney allograft survival[J]. Clin J Am Soc Nephrol, 2021, 16(2): 275-283. DOI: 10.2215/CJN.13640820.
    [5]
    KEITH DS, VRANIC GM. Approach to the highly sensitized kidney transplant candidate[J]. Clin J Am Soc Nephrol, 2016, 11(4): 684-693. DOI: 10.2215/CJN.05930615.
    [6]
    SÜSAL C, MORATH C. Virtual PRA replaces traditional PRA: small change but significantly more justice for sensitized patients[J]. Transpl Int, 2015, 28(6): 708-709. DOI: 10.1111/tri.12572.
    [7]
    HUBER L, LACHMANN N, NIEMANN M, et al. Pretransplant virtual PRA and long-term outcomes of kidney transplant recipients[J]. Transpl Int, 2015, 28(6): 710-719. DOI: 10.1111/tri.12533.
    [8]
    MALHEIRO J, TAFULO S, DIAS L, et al. Analysis of preformed donor-specific anti-HLA antibodies characteristics for prediction of antibody-mediated rejection in kidney transplantation[J]. Transpl Immunol, 2015, 32(2): 66-71. DOI: 10.1016/j.trim.2015.01.002.
    [9]
    ALVAREZ-MÁRQUEZ A, AGUILERA I, GENTIL MA, et al. Donor-specific antibodies against HLA, MICA, and GSTT1 in patients with allograft rejection and C4d deposition in renal biopsies[J]. Transplantation, 2009, 87(1): 94-99. DOI: 10.1097/TP.0b013e31818bd790.
    [10]
    BUTLER CL, HICKEY MJ, JIANG N, et al. Discovery of non-HLA antibodies associated with cardiac allograft rejection and development and validation of a non-HLA antigen multiplex panel: from bench to bedside[J]. Am J Transplant, 2020, 20(10): 2768-2780. DOI: 10.1111/ajt.15863.
    [11]
    TAMBUR AR, CAMPBELL P, CHONG AS, et al. Sensitization in Transplantation: Assessment of Risk (STAR) 2019 working group meeting report[J]. Am J Transplant, 2020, 20(10): 2652-2668. DOI: 10.1111/ajt.15937.
    [12]
    SENEV A, COEMANS M, LERUT E, et al. Eplet mismatch load and de novo occurrence of donor-specific anti-HLA antibodies, rejection, and graft failure after kidney transplantation: an observational cohort study[J]. J Am Soc Nephrol, 2020, 31(9): 2193-2204. DOI: 10.1681/ASN.2020010019.
    [13]
    PHILOGENE MC, AMIN A, ZHOU S, et al. Eplet mismatch analysis and allograft outcome across racially diverse groups in a pediatric transplant cohort: a singlecenter analysis[J]. Pediatr Nephrol, 2020, 35(1): 83-94. DOI: 10.1007/s00467-019-04344-1.
    [14]
    TAFULO S, MALHEIRO J, SANTOS S, et al. Degree of HLA class Ⅱ eplet mismatch load improves prediction of antibody-mediated rejection in living donor kidney transplantation[J]. Hum Immunol, 2019, 80(12): 966-975. DOI: 10.1016/j.humimm.2019.09.010.
    [15]
    MALLON DH, KLING C, ROBB M, et al. Predicting humoral alloimmunity from differences in donor and recipient HLA surface electrostatic potential[J]. J Immunol, 2018, 201(12): 3780-3792. DOI: 10.4049/jimmunol.1800683.
    [16]
    TAMBUR AR, MCDOWELL H, HOD-DVORAI R, et al. The quest to decipher HLA immunogenicity: telling friend from foe[J]. Am J Transplant, 2019, 19(10): 2910- 2925. DOI: 10.1111/ajt.15489.
    [17]
    ALTHAF MM, EL KOSSI M, JIN JK, et al. Human leukocyte antigen typing and crossmatch: a comprehensive review[J]. World J Transplant, 2017, 7(6): 339-348. DOI: 10.5500/wjt.v7.i6.339.
    [18]
    KOEFOED-NIELSEN P, MØLLER BK. Donor-specific anti-HLA antibodies by solid phase immunoassays: advantages and technical concerns[J]. Int Rev Immunol, 2019, 38(3): 95-105. DOI: 10.1080/08830185.2018.1525367.
    [19]
    MORRIS AB, SULLIVAN HC, KRUMMEY SM, et al. Out with the old, in with the new: virtual versus physical crossmatching in the modern era[J]. HLA, 2019, 94(6): 471-481. DOI: 10.1111/tan.13693.
    [20]
    TAMBUR AR, CAMPBELL P, CLAAS FH, et al. Sensitization in Transplantation: Assessment of Risk (STAR) 2017 working group meeting report[J]. Am J Transplant, 2018, 18(7): 1604-1614. DOI: 10.1111/ajt.14752.
    [21]
    UBARA Y, KAWAGUCHI T, NAGASAWA T, et al. Kidney biopsy guidebook 2020 in Japan[J]. Clin Exp Nephrol, 2021, 25(4): 325-364. DOI: 10.1007/s10157-020-01986-6.
    [22]
    SCHINSTOCK CA, COSIO F, CHEUNGPASITPORN W, et al. The value of protocol biopsies to identify patients with de novo donor-specific antibody at high risk for allograft loss[J]. Am J Transplant, 2017, 17(6): 1574- 1584. DOI: 10.1111/ajt.14161.
    [23]
    FU MS, LIM SJ, JALALONMUHALI M, et al. Clinical significance of renal allograft protocol biopsies: a single tertiary center experience in Malaysia[J]. J Transplant, 2019: 9153875. DOI: 10.1155/2019/9153875.
    [24]
    MUCZYNSKI KA, LECA N, ANDERSON AE, et al. Multicolor flow cytometry and cytokine analysis provides enhanced information on kidney transplant biopsies[J]. Kidney Int Rep, 2018, 3(4): 956-969. DOI: 10.1016/j.ekir.2018.02.012.
    [25]
    SAWITZKI B, HARDEN PN, REINKE P, et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials[J]. Lancet, 2020, 395(10237): 1627-1639. DOI: 10.1016/S0140-6736(20)30167-7.
    [26]
    BECKETT J, HESTER J, ISSA F, et al. Regulatory B cells in transplantation: roadmaps to clinic[J]. Transpl Int, 2020, 33(11): 1353-1368. DOI: 10.1111/tri.13706.
    [27]
    ZHANG R. Donor-specific antibodies in kidney transplant recipients[J]. Clin J Am Soc Nephrol, 2018, 13(1): 182-192. DOI: 10.2215/CJN.00700117.
    [28]
    TIMOFEEVA OA. Donor-specific HLA antibodies as biomarkers of transplant rejection[J]. Clin Lab Med, 2019, 39(1): 45-60. DOI: 10.1016/j.cll.2018.10.007.
    [29]
    HOURMANT M, CESBRON-GAUTIER A, TERASAKI PI, et al. Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation[J]. J Am Soc Nephrol, 2005, 16(9): 2804-2812. DOI: 10.1681/ASN.2004121130.
    [30]
    MALHEIRO J, TAFULO S, DIAS L, et al. Determining donor-specific antibody C1q-binding ability improves the prediction of antibody-mediated rejection in human leucocyte antigen-incompatible kidney transplantation[J]. Transpl Int, 2017, 30(4): 347-359. DOI: 10.1111/tri.12873.
    [31]
    LEFAUCHEUR C, VIGLIETTI D, BENTLEJEWSKI C, et al. IgG donor-specific anti-human HLA antibody subclasses and kidney allograft antibody-mediated injury[J]. J Am Soc Nephrol, 2016, 27(1): 293-304. DOI: 10.1681/ASN.2014111120.
    [32]
    RAMPERSAD C, SHAW J, GIBSON IW, et al. Early antibody-mediated kidney transplant rejection associated with anti-vimentin antibodies: a case report[J]. Am J Kidney Dis, 2020, 75(1): 138-143. DOI: 10.1053/j.ajkd.2019.06.010.
    [33]
    CHOWDHRY M, MAKROO RN, SINGH M, et al. Role of anti-MICA antibodies in graft survival of renal transplant recipients of India[J]. J Immunol Res, 2018: 3434050. DOI: 10.1155/2018/3434050.
    [34]
    AKGUL SU, OGUZ FS, ÇALIŞKAN Y, et al. The effect of glutathion S-transferase polymoprhisms and antiGSTT1 antibodies on allograft functions in recipients of renal transplant[J]. Transplant Proc, 2012, 44(6): 1679- 1684. DOI: 10.1016/j.transproceed.2012.04.004.
    [35]
    LEFAUCHEUR C, VIGLIETTI D, BOUATOU Y, et al. Non-HLA agonistic anti-angiotensin Ⅱ type 1 receptor antibodies induce a distinctive phenotype of antibodymediated rejection in kidney transplant recipients[J]. Kidney Int, 2019, 96(1): 189-201. DOI: 10.1016/j.kint.2019.01.030.
    [36]
    CRESPO M, LLINÀS-MALLOL L, REDONDOPACHÓN D, et al. Non-HLA antibodies and epitope mismatches in kidney transplant recipients with histological antibody-mediated rejection[J]. Front Immunol, 2021, 12: 703457. DOI: 10.3389/fimmu.2021.703457.
    [37]
    SUTHERLAND SM, LI L, SIGDEL TK, et al. Protein microarrays identify antibodies to protein kinase Czeta that are associated with a greater risk of allograft loss in pediatric renal transplant recipients[J]. Kidney Int, 2009, 76(12): 1277-1283. DOI: 10.1038/ki.2009.384.
    [38]
    BLOOM RD, BROMBERG JS, POGGIO ED, et al. Cellfree DNA and active rejection in kidney allografts[J]. J Am Soc Nephrol, 2017, 28(7): 2221-2232. DOI: 10.1681/ASN.2016091034.
    [39]
    THONGPRAYOON C, VAITLA P, CRAICI IM, et al. The use of donor-derived cell-free DNA for assessment of allograft rejection and injury status[J]. J Clin Med, 2020, 9(5): 1480. DOI: 10.3390/jcm9051480.
    [40]
    VEERMAN RE, GÜÇLÜLER AKPINAR G, ELDH M, et al. Immune cell-derived extracellular vesicles - functions and therapeutic applications[J]. Trends Mol Med, 2019, 25(5): 382-394. DOI: 10.1016/j.molmed.2019.02.003.
    [41]
    BENICHOU G, WANG M, AHRENS K, et al. Extracellular vesicles in allograft rejection and tolerance[J]. Cell Immunol, 2020, 349: 104063. DOI: 10.1016/j.cellimm.2020.104063.
    [42]
    TAKADA Y, KAMIMURA D, JIANG JJ, et al. Increased urinary exosomal SYT17 levels in chronic active antibody-mediated rejection after kidney transplantation via the IL-6 amplifier[J]. Int Immunol, 2020, 32(10): 653- 662. DOI: 10.1093/intimm/dxaa032.
    [43]
    MATZ M, HEINRICH F, LORKOWSKI C, et al. MicroRNA regulation in blood cells of renal transplanted patients with interstitial fibrosis/tubular atrophy and antibody-mediated rejection[J]. PLoS One, 2018, 13(8): e0201925. DOI: 10.1371/journal.pone.0201925.
    [44]
    NARIMAN-SALEH-FAM Z, BASTAMI M, ARDALAN M, et al. Cell-free microRNA-148a is associated with renal allograft dysfunction: implication for biomarker discovery[J]. J Cell Biochem, 2019, 120(4): 5737-5746. DOI: 10.1002/jcb.27860.
    [45]
    VAN LOON E, GAZUT S, YAZDANI S, et al. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: a multicentre, prospective study[J]. EBioMedicine, 2019, 46: 463-472. DOI: 10.1016/j.ebiom.2019.07.028.
    [46]
    DIEBOLDER CA, BEURSKENS FJ, DE JONG RN, et al. Complement is activated by IgG hexamers assembled at the cell surface[J]. Science, 2014, 343(6176): 1260- 1263. DOI: 10.1126/science.1248943.
    [47]
    LAN JH, TINCKAM K. Clinical utility of complement dependent assays in kidney transplantation[J]. Transplantation, 2018, 102(1S Suppl 1): S14-S22. DOI: 10.1097/TP.0000000000001819.
    [48]
    WEITZNER BD, DUNBRACK RL JR, GRAY JJ. The origin of CDR H3 structural diversity[J]. Structure, 2015, 23(2): 302-311. DOI: 10.1016/j.str.2014.11.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (889) PDF downloads(302) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return