Volume 12 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
He Jiannan, Sun Qiquan. International frontier hotspots of basic and translational medicine research related to renal transplantation at the 2020 ATC[J]. ORGAN TRANSPLANTATION, 2021, 12(1): 23-28. doi: 10.3969/j.issn.1674-7445.2021.01.004
Citation: He Jiannan, Sun Qiquan. International frontier hotspots of basic and translational medicine research related to renal transplantation at the 2020 ATC[J]. ORGAN TRANSPLANTATION, 2021, 12(1): 23-28. doi: 10.3969/j.issn.1674-7445.2021.01.004

International frontier hotspots of basic and translational medicine research related to renal transplantation at the 2020 ATC

doi: 10.3969/j.issn.1674-7445.2021.01.004
More Information
  • Corresponding author: Sun Qiquan, Email: sunqiq@mail.sysu.edu.cn
  • Received Date: 2020-10-27
    Available Online: 2021-01-19
  • Publish Date: 2021-01-19
  • The American Transplant Congress (ATC) is an annual international academic conference in the field of transplantation, which includes the latest achievements of scholars around the world in transplantation, and also leads the frontier direction of transplantation research. In this paper, the international forefront hotspots in basic and translational medicine research associated with renal transplantation in 2020 ATC were summarized, including the new discoveries of memory cell function and immune memory mechanism, the latest discovery in the mechanism of rejection and immune tolerance, the current research status of xenotransplantation, the potential solutions of antibody-mediated rejection (AMR), and the application of nanomedicine and single-cell RNA sequencing in renal transplantation, etc.

     

  • loading
  • [1]
    GEBHARDT T, WAKIM LM, EIDSMO L, et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus[J]. Nat Immunol, 2009, 10(5):524-530. DOI: 10.1038/ni.1718.
    [2]
    WAKIM LM, WOODWARD-DAVIS A, BEVAN MJ. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence[J]. Proc Natl Acad Sci U S A, 2010, 107(42):17872-17879. DOI: 10.1073/pnas.1010201107.
    [3]
    ABOU-DAYA K, ZHAO D, TIEU R, et al. Tissue resident memory T cells in mouse renal transplantation [J]. Am J Transplant, 2020, 20 (Suppl 3):13.
    [4]
    KRUPNICK AS, LIN X, LI W, et al. Central memory CD8+ T lymphocytes mediate lung allograft acceptance[J]. J Clin Invest, 2014, 124(3):1130-1143. DOI: 10.1172/JCI71359.
    [5]
    LI S, XIE Q, ZENG Y, et al. A naturally occurring CD8(+)CD122(+) T-cell subset as a memory-like Treg family[J]. Cell Mol Immunol, 2014, 11(4):326-331. DOI: 10.1038/cmi.2014.25.
    [6]
    MORRIS AB, PINELLI DF, LIU D, et al. Memory T cell-mediated rejection is mitigated by FcγRIIB expression on CD8+ T cells[J]. Am J Transplant, 2020, 20(8):2206-2215. DOI: 10.1111/ajt.15837.
    [7]
    LIU W, XIAO X, DEMIRCI G, et al. Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms[J]. J Immunol, 2012, 188(6):2703-2711. DOI: 10.4049/jimmunol.1102997.
    [8]
    SUN JC, BEILKE JN, LANIER LL. Adaptive immune features of natural killer cells[J]. Nature, 2009, 457(7229):557-561. DOI: 10.1038/nature07665.
    [9]
    DAI H, LAN P, ZHAO D, et al. PIRs mediate innate myeloid cell memory to nonself MHC molecules[J]. Science, 2020, 368(6495):1122-1127. DOI: 10.1126/science.aax4040.
    [10]
    FORD ML, ADAMS AB, PEARSON TC. Targeting co-stimulatory pathways: transplantation and autoimmunity[J]. Nat Rev Nephrol, 2014, 10(1):14-24. DOI: 10.1038/nrneph.2013.183.
    [11]
    KINNEAR G, JONES ND, WOOD KJ. Costimulation blockade: current perspectives and implications for therapy[J]. Transplantation, 2013, 95(4):527-535. DOI: 10.1097/TP.0b013e31826d4672.
    [12]
    LIU D, FORD ML. CD11b is a novel alternate receptor for CD154 during alloimmunity[J]. Am J Transplant, 2020, 20(8):2216-2225. DOI: 10.1111/ajt.15835.
    [13]
    AHRENS K, O JM, SOMMER W, et al. Cardiac allograft tolerance can be achieved in non-human primates via transient mixed hematopoietic chimerism and erythropoietin administration [J]. Am J Transplant, 2020, 20 (Suppl 3):1025.
    [14]
    BUTLER JR, TECTOR AJ. CRISPR genome-editing: a medical revolution[J]. J Thorac Cardiovasc Surg, 2017, 153(2):488-491. DOI: 10.1016/j.jtcvs.2016.08.067.
    [15]
    COOPER DKC, GASTON R, ECKHOFF D, et al. Xenotransplantation-the current status and prospects[J]. Br Med Bull, 2018, 125(1):5-14. DOI: 10.1093/bmb/ldx043.
    [16]
    MA DH, SASAKI H, HIROSE T, et al. Successful long-term TMA- and rejection- free survival of a kidney xenograft with triple xenoantigen knockout plus insertion of multiple human transgenes[J]. Am J Transplant, 2020, 20(Suppl 3):752.
    [17]
    HIGGINBOTHAM L, MATHEWS D, BREEDEN CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model[J]. Xenotransplantation, 2015, 22(3):221-230. DOI: 10.1111/xen.12166.
    [18]
    CHONG AS, ROTHSTEIN DM, SAFA K, et al. Outstanding questions in transplantation: B cells, alloantibodies, and humoral rejection[J]. Am J Transplant, 2019, 19(8):2155-2163. DOI: 10.1111/ajt.15323.
    [19]
    BERGER M, LEFAUCHEUR C, JORDAN SC. Update on C1 esterase inhibitor in human solid organ transplantation[J]. Transplantation, 2019, 103(9):1763-1775. DOI: 10.1097/TP.0000000000002717.
    [20]
    BLANTON C, REYES J, EERHART M, et al. Donor intervention and recipient treatment with recombinant human C1 inhibitor prevents delayed graft function in a non-human primate model of kidney transplantation[J]. Am J Transplant, 2020, 20(Suppl 3):256.
    [21]
    HAJEBI S, RABIEE N, BAGHERZADEH M, et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems[J]. Acta Biomater, 2019, 92:1-18. DOI: 10.1016/j.actbio.2019.05.018.
    [22]
    HASHIMOTO Y, MUKAI SA, SASAKI Y, et al. Nanogel tectonics for tissue engineering: protein delivery systems with nanogel chaperones[J]. Adv Healthc Mater, 2018, 7(23):e1800729. DOI: 10.1002/adhm.201800729.
    [23]
    ESKANDARI SK, ALHADDAD JB, SULKAJ I, et al. Regulatory T cells engineered with TCR-signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter[J] Am J Transplant, 2020, 20(suppl 3):331.
    [24]
    TINEL C, LAMARTHÉE B, VON TOKARSKI F, et al. A monocyte-derived microRNA signature for antibody-mediated rejection in kidney transplantation[J]. Am J Transplant, 2020, 20(Suppl 3):309.
    [25]
    GAO S. Data analysis in single-cell transcriptome sequencing[J]. Methods Mol Biol, 2018, 1754:311-326. DOI: 10.1007/978-1-4939-7717-8_18.
    [26]
    WU H, HUMPHREYS BD. The promise of single-cell RNA sequencing for kidney disease investigation[J]. Kidney Int, 2017, 92(6):1334-1342. DOI: 10.1016/j.kint. 2017.06.033.
    [27]
    MALONE AF, HUMPHREYS BD. Single-cell transcriptomics and solid organ transplantation[J]. Transplantation, 2019, 103(9):1776-1782. DOI: 10.1097/TP.0000000000002725.
    [28]
    NAIK AS, MENON R, OTTO E, et al. Single cell RNA sequencing of normal kidney allograft surveillance biopsies show evidence of dynamic glomerular endothelial cell activation [J]. Am J Transplant, 2020, 20 (Suppl 3):13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (207) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return