Volume 11 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Han Fei, Sun Qiquan. Research progress on molecular markers related to the donor kidney injury from organ donation after citizen's death[J]. ORGAN TRANSPLANTATION, 2020, 11(4): 526-532. doi: 10.3969/j.issn.1674-7445.2020.04.018
Citation: Han Fei, Sun Qiquan. Research progress on molecular markers related to the donor kidney injury from organ donation after citizen's death[J]. ORGAN TRANSPLANTATION, 2020, 11(4): 526-532. doi: 10.3969/j.issn.1674-7445.2020.04.018

Research progress on molecular markers related to the donor kidney injury from organ donation after citizen's death

doi: 10.3969/j.issn.1674-7445.2020.04.018
More Information
  • Corresponding author: Sun Qiquan, Email:sunqiq@mail.sysu.edu.cn
  • Received Date: 2020-04-26
    Available Online: 2021-01-19
  • Publish Date: 2020-07-15
  • Shortage of donor kidney is a major problem in renal transplantation. Accurate evaluation of donor kidney function may reduce the organ rejection rate and save more patients with uremia. Compared with pathological examination, detection of circulating molecular markers is more convenient in clinical application. In this article, the research progress on the markers of kidney injury, such as serum creatinine, serum cystatin C (Cys-C), neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein (L-FABP), mitochondrial DNA (mtDNA), kidney injury molecule-1(KIM-1) and interleukin -18 (IL-18), were briefly reviewed.

     

  • loading
  • [1]
    CHEN L, SU W, CHEN H, et al. Proteomics for biomarker identification and clinical application in kidney disease[J]. Adv Clin Chem, 2018, 85:91-113. DOI: 10.1016/bs.acc.2018.02.005.
    [2]
    MACIEL AT, NASSAR AP JR, VITORIO D. Very transient cases of acute kidney injury in the early postoperative period after cardiac surgery: the relevance of more frequent serum creatinine assessment and concomitant urinary biochemistry evaluation[J]. J Cardiothorac Vasc Anesth, 2016, 30(1):56-63. DOI:10. 1053/j.jvca.2015.04.020.
    [3]
    SHARDLOW A, MCINTYRE NJ, FRASER SDS, et al. The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: a primary care cohort study[J]. PLoS Med, 2017, 14(10):e1002400. DOI: 10.1371/journal.pmed.1002400.
    [4]
    KARKOUTI K, WIJEYSUNDERA DN, YAU TM, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors[J]. Circulation, 2009, 119(4):495-502. DOI: 10.1161/CIRCULATIONAHA.108.786913.
    [5]
    YANG SK, LIU J, ZHANG XM, et al. Diagnostic accuracy of serum cystatin C for the evaluation of renal dysfunction in diabetic patients: a Meta-analysis[J]. Ther Apher Dial, 2016, 20(6):579-587. DOI: 10.1111/1744-9987.12462.
    [6]
    LEZAIC V, DAJAK M, RADIVOJEVIC D, et al. Cystatin C and serum creatinine as predictors of kidney graft outcome[J]. Int Urol Nephrol, 2014, 46(7):1447-1454. DOI: 10.1007/s11255-013-0624-7.
    [7]
    PILCH NA, ROHAN V, RAO V, et al. Renal function variability: an independent risk factor for graft loss and death following kidney transplantation[J]. Am J Nephrol, 2018, 47(3):191-199. DOI: 10.1159/000487714.
    [8]
    TANGRI N, STEVENS LA, SCHMID CH, et al. Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate[J]. Kidney Int, 2011, 79(4):471-477. DOI: 10.1038/ki.2010.431.
    [9]
    FERGUSON TW, KOMENDA P, TANGRI N. Cystatin C as a biomarker for estimating glomerular filtration rate[J]. Curr Opin Nephrol Hypertens, 2015, 24(3):295-300. DOI: 10.1097/MNH.0000000000000115.
    [10]
    GOSMANOVA EO, LYUBAROVA R. Neutrophil gelatinase-associated lipocalin in acute heart failure: time to move on?[J]. Eur J Heart Fail, 2020, 22(2):264-266. DOI: 10.1002/ejhf.1684.
    [11]
    ZHANG W, YANG S, CUI L, et al. Neutrophil gelatinase-associated lipocalin worsens ischemia/reperfusion damageof kidney cells by autophagy[J]. Ren Fail, 2016, 38(7):1136-1140. DOI: 10.3109/0886022X.2016.1158041.
    [12]
    MA Q, DEVARAJAN SR, DEVARAJAN P. Amelioration of cisplatin-induced acute kidney injury by recombinant neutrophil gelatinase-associated lipocalin[J]. Ren Fail, 2016, 38(9):1476-1482. DOI:10.1080/0886022X.2016. 1227917.
    [13]
    HERBERT C, PATEL M, NUGENT A, et al. Serum cystatin C as an early marker of neutrophil gelatinase-associated lipocalin-positive acute kidney injury resulting from cardiopulmonary bypass in infants with congenital heart disease[J]. Congenit Heart Dis, 2015, 10(4):E180-E188. DOI: 10.1111/chd.12253.
    [14]
    GEORGE B, JOY MS, ALEKSUNES LM. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy[J]. Exp Biol Med (Maywood), 2018, 243(3):272-282. DOI: 10.1177/1535370217745302.
    [15]
    DEVARAJAN P. Neutrophil gelatinase-associated lipocalin--an emerging troponin for kidney injury[J]. Nephrol Dial Transplant, 2008, 23(12):3737-3743. DOI:10. 1093/ndt/gfn531.
    [16]
    CUI LY, ZHU X, YANG S, et al. Prognostic value of levels of urine neutrophil gelatinase-associated lipocalin and interleukin-18 in patients with delayed graft function after kidney transplantation[J]. Transplant Proc, 2015, 47(10):2846-2851. DOI:10.1016/j.transproceed.2015.10. 042.
    [17]
    MOLEDINA DG, HALL IE, THIESSEN-PHILBROOK H, et al. Performance of serum creatinine and kidney injury biomarkers for diagnosing histologic acute tubular injury[J]. Am J Kidney Dis, 2017, 70(6):807-816. DOI: 10.1053/j.ajkd.2017.06.031.
    [18]
    KOO TY, JEONG JC, LEE Y, et al. Pre-transplant evaluation of donor urinary biomarkers can predict reduced graft function after deceased donor kidney transplantation[J]. Medicine (Baltimore), 2016, 95(11): e3076. DOI: 10.1097/MD.0000000000003076.
    [19]
    MAIER HT, ASHRAF MI, DENECKE C, et al. Prediction of delayed graft function and long-term graft survival by serum and urinary neutrophil gelatinase-associated lipocalin during the early postoperative phase after kidney transplantation[J]. PLoS One, 2018, 13(1):e0189932. DOI: 10.1371/journal.pone.0189932.
    [20]
    HOLLMEN ME, KYLLÖNEN LE, MERENMIES J, et al. Serum neutrophil gelatinase-associated lipocalin and recovery of kidney graft function after transplantation[J]. BMC Nephrol, 2014, 15:123. DOI: 10.1186/1471-2369-15-123.
    [21]
    DONG L, MA Q, BENNETT M, et al. Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass[J]. Pediatr Nephrol, 2017, 32(12):2351-2360. DOI: 10.1007/s00467-017-3748-7.
    [22]
    ASADA T, ISSHIKI R, HAYASE N, et al. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein[J]. Sci Rep, 2016, 6:33077. DOI: 10.1038/srep33077.
    [23]
    FERGUSON MA, VAIDYA VS, WAIKAR SS, et al. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury[J]. Kidney Int, 2010, 77(8):708-714. DOI: 10.1038/ki.2009.422.
    [24]
    MATSUI K, KAMIJO-IKEMORI A, SUGAYA T, et al. Usefulness of urinary biomarkers in early detection of acute kidney injury after cardiac surgery in adults[J]. Circ J, 2012, 76(1):213-220. DOI: 10.1253/circj.cj-11-0342.
    [25]
    REESE PP, HALL IE, WENG FL, et al. Associations between deceased-donor urine injury biomarkers and kidney transplant outcomes[J]. J Am Soc Nephrol, 2016, 27(5):1534-1543. DOI: 10.1681/ASN.2015040345.
    [26]
    PAJEK J, ŠKOBERNE A, ŠOSTERIČ K, et al. Non-inferiority of creatinine excretion rate to urinary L-FABP and NGAL as predictors of early renal allograft function[J]. BMC Nephrol, 2014, 15:117. DOI: 10.1186/1471-2369-15-117.
    [27]
    LI X, FANG P, LI Y, et al. Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6):1090-1100. DOI: 10.1161/ATVBAHA.115.306964.
    [28]
    SCHÖPF B, WEISSENSTEINER H, SCHÄFER G, et al. OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation[J]. Nat Commun, 2020, 11(1):1487. DOI: 10.1038/s41467-020-15237-5.
    [29]
    WENCESLAU CF, MCCARTHY CG, SZASZ T, et al. Mitochondrial damage-associated molecular patterns and vascular function[J]. Eur Heart J, 2014, 35(18):1172-1177. DOI: 10.1093/eurheartj/ehu047.
    [30]
    AHMED AI, SOLIMAN RA, SAMIR S. Cell free DNA and procalcitonin as early markers of complications in ICU patients with multiple trauma and major surgery[J]. Clin Lab, 2016, 62(12):2395-2404. DOI: 10.7754/Clin.Lab.2016.160615.
    [31]
    EIRIN A, SAAD A, TANG H, et al. Urinary mitochondrial DNA copy number identifies chronic renal injury in hypertensive patients[J]. Hypertension, 2016, 68(2):401-410. DOI: 10.1161/HYPERTENSIONAHA.116.07849.
    [32]
    WHITAKER RM, STALLONS LJ, KNEFF JE, et al. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury[J]. Kidney Int, 2015, 88(6):1336-1344. DOI: 10.1038/ki.2015.240.
    [33]
    HAN F, WAN S, SUN Q, et al. Donor plasma mitochondrial DNA is correlated with posttransplant renal allograft function[J]. Transplantation, 2019, 103(11):2347-2358. DOI: 10.1097/TP.0000000000002598.
    [34]
    BANK JR, VAN DER POL P, VREEKEN D, et al. Kidney injury molecule-1 staining in renal allograft biopsies 10 days after transplantation is inversely correlated with functioning proximal tubular epithelial cells[J]. Nephrol Dial Transplant, 2017, 32(12):2132-2141. DOI: 10.1093/ndt/gfx286.
    [35]
    REN H, ZHOU X, DAI D, et al. Assessment of urinary kidney injury molecule-1 and interleukin-18 in the early post-burn period to predict acute kidney injury for various degrees of burn injury[J]. BMC Nephrol, 2015, 16:142. DOI: 10.1186/s12882-015-0140-3.
    [36]
    SHAO X, TIAN L, XU W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a Meta-analysis[J]. PLoS One, 2014, 9(1):e84131. DOI: 10.1371/journal.pone.0084131.
    [37]
    PARIKH CR, THIESSEN-PHILBROOK H, GARG AX, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery[J]. Clin J Am Soc Nephrol, 2013, 8(7):1079-1088. DOI: 10.2215/CJN.10971012.
    [38]
    LIANGOS O, PERIANAYAGAM MC, VAIDYA VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure[J]. J Am Soc Nephrol, 2007, 18(3):904-912. DOI: 10.1681/ASN.2006030221.
    [39]
    KOYAWALA N, REESE PP, HALL IE, et al. Urine injury biomarkers are not associated with kidney transplant failure[J]. Transplantation, 2020, 104(6):1272-1279. DOI: 10.1097/TP.0000000000002948.
    [40]
    ZHENG YT, CHEN CB, YUAN XP, et al. Impact of acute kidney injury in donors on renal graft survival: a systematic review and Meta-analysis[J]. Ren Fail, 2018, 40(1):649-656. DOI: 10.1080/0886022X.2018.1535982.
    [41]
    LANDEMAINE T, JACKSON A, BELLAHCÈNE A, et al. A six-gene signature predicting breast cancer lung metastasis[J]. Cancer Res, 2008, 68(15):6092-6099. DOI: 10.1158/0008-5472.CAN-08-0436.
    [42]
    ANDERS HJ, MURUVE DA. The inflammasomes in kidney disease[J]. J Am Soc Nephrol, 2011, 22(6):1007-1018. DOI: 10.1681/ASN.2010080798.
    [43]
    SCHREZENMEIER EV, BARASCH J, BUDDE K, et al. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance[J]. Acta Physiol (Oxf), 2017, 219(3):554-572. DOI: 10.1111/apha.12764.
    [44]
    LIANG H, XU F, ZHANG T, et al. Inhibition of IL-18 reduces renal fibrosis after ischemia-reperfusion[J]. Biomed Pharmacother, 2018, 106:879-889. DOI: 10.1016/j.biopha.2018.07.031.
    [45]
    NYDAM TL, PLENTER R, JAIN S, et al. Caspase inhibition during cold storage improves graft function and histology in a murine kidney transplant model[J]. Transplantation, 2018, 102(9):1487-1495. DOI: 10.1097/TP.0000000000002218.
    [46]
    WU H, CRAFT ML, WANG P, et al. IL-18 contributes to renal damage after ischemia-reperfusion[J]. J Am Soc Nephrol, 2008, 19(12):2331-2341. DOI:10.1681/ASN. 2008020170.
    [47]
    PARIKH CR, COCA SG, THIESSEN-PHILBROOK H, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery[J]. J Am Soc Nephrol, 2011, 22(9):1748-1757. DOI: 10.1681/ASN.2010121302.
    [48]
    PIANCATELLI D, MACCARONE D, COLANARDI A, et al. Kidney transplantation, polymorphisms of IL-18, and other pro-inflammatory genes and late post-transplant outcome[J]. Transplant Proc, 2016, 48(2):323-325. DOI: 10.1016/j.transproceed.2016.02.010.
    [49]
    ALGE JL, KARAKALA N, NEELY BA, et al. Urinary angiotensinogen and risk of severe AKI[J]. Clin J Am Soc Nephrol, 2013, 8(2):184-193. DOI:10.2215/CJN. 06280612.
    [50]
    KASHANI K, AL-KHAFAJI A, ARDILES T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25. DOI: 10.1186/cc12503.
    [51]
    AREGGER F, UEHLINGER DE, WITOWSKI J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury[J]. Kidney Int, 2014, 85(4):909-919. DOI: 10.1038/ki.2013.363.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (206) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return