Volume 11 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
Yuan Shun, Wang Zhiwei. Research progress on myeloid-derived suppressor cell and transplantation immune tolerance[J]. ORGAN TRANSPLANTATION, 2020, 11(4): 435-442. doi: 10.3969/j.issn.1674-7445.2020.04.002
Citation: Yuan Shun, Wang Zhiwei. Research progress on myeloid-derived suppressor cell and transplantation immune tolerance[J]. ORGAN TRANSPLANTATION, 2020, 11(4): 435-442. doi: 10.3969/j.issn.1674-7445.2020.04.002

Research progress on myeloid-derived suppressor cell and transplantation immune tolerance

doi: 10.3969/j.issn.1674-7445.2020.04.002
More Information
  • Corresponding author: Wang Zhiwei, Email:wangzhiwei@whu.edu.cn
  • Received Date: 2020-04-02
    Available Online: 2021-01-19
  • Publish Date: 2020-07-15
  • Myeloid-derived suppressor cell (MDSC) is a type of heterogeneous cell derived from bone marrow, which was first found in tumor. MDSC can inhibit the function of T cell with immunosuppressive effect. In recent years, more and more studies have shown that in the field of organ transplantation, MDSC can also regulate the host's immune function, induce specific immune tolerance, and play a protective role in transplant organs, which is expected to become a new target in clinical treatment of transplant rejection. The biological characteristics of MDSC and the mechanism of immune tolerance induced by MDSC were reviewed in this paper.

     

  • loading
  • [1]
    FLEMING V, HU X, WEBER R, et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression[J]. Front Immunol, 2018, 9: 398. DOI: 10.3389/fimmu.2018.00398.
    [2]
    ZHANG W, LI J, QI G, et al. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy[J]. J Transl Med, 2018, 16(1): 19. DOI: 10.1186/s12967-018-1395-9.
    [3]
    GARCIA AJ, RUSCETTI M, ARENZANA TL, et al. Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression[J]. Mol Cell Biol, 2014, 34(11): 2017-2028. DOI: 10.1128/MCB.00090-14.
    [4]
    FUJⅡ W, ASHIHARA E, HIRAI H, et al. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis[J]. J Immunol, 2013, 191(3): 1073-1081. DOI: 10.4049/jimmunol.1203535.
    [5]
    AARTS CEM, KUIJPERS TW. Neutrophils as myeloid-derived suppressor cells[J]. Eur J Clin Invest, 2018, 48 (Suppl 2): e12989. DOI: 10.1111/eci.12989.
    [6]
    HAILE LA, GAMREKELASHVILI J, MANNS MP, et al. CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice[J]. J Immunol, 2010, 185(1): 203-210. DOI: 10.4049/jimmunol.0903573.
    [7]
    JITSCHIN R, BRAUN M, BÜTTNER M, et al. CLL-cells induce IDOhi CD14+HLADRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote Tregs[J]. Blood, 2014, 124(5): 750-760. DOI: 10.1182/blood-2013-12-546416.
    [8]
    VASQUEZ-DUNDDEL D, PAN F, ZENG Q, et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients[J]. J Clin Invest, 2013, 123(4): 1580-1589. doi: 10.1172/JCI60083
    [9]
    GABRILOVICH DI, NAGARAJ S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174. DOI: 10.1038/nri2506.
    [10]
    LUAN Y, MOSHEIR E, MENON MC, et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion[J]. Am J Transplant, 2013, 13(12): 3123-3131. DOI: 10.1111/ajt.12461.
    [11]
    BRONTE V, BRANDAU S, CHEN SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016, 7: 12150. DOI: 10.1038/ncomms12150.
    [12]
    CONDAMINE T, MASTIO J, GABRILOVICH DI. Transcriptional regulation of myeloid-derived suppressor cells[J]. J Leukoc Biol, 2015, 98(6): 913-922. DOI: 10.1189/jlb.4RI0515-204R.
    [13]
    MARIGO I, BOSIO E, SOLITO S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor[J]. Immunity, 2010, 32(6): 790-802. DOI: 10.1016/j.immuni.2010.05.010.
    [14]
    HIGHFILL SL, RODRIGUEZ PC, ZHOU Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13[J]. Blood, 2010, 116(25): 5738-5747. DOI: 10.1182/blood-2010-06-287839.
    [15]
    LECHNER MG, LIEBERTZ DJ, EPSTEIN AL. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells[J]. J Immunol, 2010, 185(4): 2273-2284. DOI: 10.4049/jimmunol.1000901.
    [16]
    OBERMAJER N, KALINSKI P. Generation of myeloid-derived suppressor cells using prostaglandin E2[J]. Transplant Res, 2012, 1(1): 15. DOI: 10.1186/2047-1440-1-15.
    [17]
    DUGAST AS, HAUDEBOURG T, COULON F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion[J]. J Immunol, 2008, 180(12): 7898-7906. doi: 10.4049/jimmunol.180.12.7898
    [18]
    ZHANG W, LIANG S, WU J, et al. Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts[J]. Transplantation, 2008, 86(8): 1125-1134. DOI: 10.1097/TP.0b013e318186fccd.
    [19]
    GARCIA MR, LEDGERWOOD L, YANG Y, et al. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice[J]. J Clin Invest, 2010, 120(7): 2486-2496. DOI: 10.1172/JCI41628.
    [20]
    TURNQUIST HR, ZHAO Z, ROSBOROUGH BR, et al. IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival[J]. J Immunol, 2011, 187(9): 4598-4610. DOI: 10.4049/jimmunol.1100519.
    [21]
    ADEEGBE D, SERAFINI P, BRONTE V, et al. In vivo induction of myeloid suppressor cells and CD4+Foxp3+ T regulatory cells prolongs skin allograft survival in mice[J]. Cell Transplant, 2011, 20(6): 941-954. DOI: 10.3727/096368910X540621.
    [22]
    CHEN G, KHERADMAND T, BRYANT J, et al. Intragraft CD11b+ IDO+ cells mediate cardiac allograft tolerance by ECDI-fixed donor splenocyte infusions[J]. Am J Transplant, 2012, 12(11): 2920-2929. DOI: 10.1111/j.1600-6143.2012.04203.x.
    [23]
    ARAKAWA Y, QIN J, CHOU HS, et al. Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase[J]. Transplantation, 2014, 97(7): 740-747. DOI: 10.1097/01.TP.0000442504.23885.f7.
    [24]
    LIAO J, WANG X, BI Y, et al. Dexamethasone potentiates myeloid-derived suppressor cell function in prolonging allograft survival through nitric oxide[J]. J Leukoc Biol, 2014, 96(5): 675-684. DOI: 10.1189/jlb.2HI1113-611RR.
    [25]
    NAKAMURA T, NAKAO T, YOSHIMURA N, et al. Rapamycin prolongs cardiac allograft survival in a mouse model by inducing myeloid-derived suppressor cells[J]. Am J Transplant, 2015, 15(9): 2364-2377. DOI: 10.1111/ajt.13276.
    [26]
    GAJARDO T, MORALES RA, CAMPOS-MORA M, et al. Exogenous interleukin-33 targets myeloid-derived suppressor cells and generates periphery-induced Foxp3+ regulatory T cells in skin-transplanted mice[J]. Immunology, 2015, 146(1): 81-88. DOI: 10.1111/imm.12483.
    [27]
    NAKAMURA T, NAKAO T, ASHIHARA E, et al. Myeloid-derived suppressor cells recruit CD4+/Foxp3+ regulatory T cells in a murine cardiac allograft[J]. Transplant Proc, 2016, 48(4): 1275-1278. DOI: 10.1016/j.transproceed.2015.10.060.
    [28]
    ZHAO Y, SHEN XF, CAO K, et al. Dexamethasone-induced myeloid-derived suppressor cells prolong allo cardiac graft survival through iNOS- and glucocorticoid receptor-dependent mechanism[J]. Front Immunol, 2018, 9: 282. DOI: 10.3389/fimmu.2018.00282.
    [29]
    NAKAO T, NAKAMURA T, MASUDA K, et al. Dexamethasone prolongs cardiac allograft survival in a murine model through myeloid-derived suppressor cells[J]. Transplant Proc, 2018, 50(1): 299-304. DOI: 10.1016/j.transproceed.2017.11.014.
    [30]
    SAVAGE TM, SHONTS BA, OBRADOVIC A, et al. Early expansion of donor-specific Tregs in tolerant kidney transplant recipients[J]. JCI Insight, 2018, 3(22):124086. DOI: 10.1172/jci.insight.124086.
    [31]
    HUANG B, PAN PY, LI Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host[J]. Cancer Res, 2006, 66(2): 1123-1131. doi: 10.1158-0008-5472.CAN-05-1299/
    [32]
    KANG X, ZHANG X, LIU Z, et al. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25T cells by activation of the TGF-β/β-catenin pathway[J]. Mol Hum Reprod, 2016, 22(7): 499-511. DOI: 10.1093/molehr/gaw026.
    [33]
    PARK MJ, LEE SH, KIM EK, et al. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice[J]. Sci Rep, 2018, 8(1): 3753. DOI: 10.1038/s41598-018-21856-2.
    [34]
    LEE CR, KWAK Y, YANG T, et al. Myeloid-derived suppressor cells are controlled by regulatory T cells via TGF-beta during murine colitis[J]. Cell Rep, 2016, 17(12): 3219-3232. DOI: 10.1016/j.celrep.2016.11.062.
    [35]
    OKANO S, ABU-ELMAGD K, KISH DD, et al. Myeloid-derived suppressor cells increase and inhibit donor-reactive T cell responses to graft intestinal epithelium in intestinal transplant patients[J]. Am J Transplant, 2018, 18(10): 2544-2558. DOI: 10.1111/ajt.14718.
    [36]
    KIM JI, LEE MK 4TH, MOORE DJ, et al. Regulatory T-cell counter-regulation by innate immunity is a barrier to transplantation tolerance[J]. Am J Transplant, 2009, 9(12): 2736-2744. DOI: 10.1111/j.1600-6143.2009.02847.x.
    [37]
    QIAN C, CAO X. Dendritic cells in the regulation of immunity and inflammation[J]. Semin Immunol, 2018, 35: 3-11. DOI: 10.1016/j.smim.2017.12.002.
    [38]
    MANNON RB. Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders?[J]. Curr Opin Organ Transplant, 2012, 17(1): 20-25. DOI: 10.1097/MOT.0b013e32834ee5b6.
    [39]
    PANG XL, WANG ZG, LIU L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924. DOI: 10.18632/aging.102346.
    [40]
    TSE GH, HUGHES J. Macrophages and transplant rejection: a novel future target?[J]. Transplantation, 2013, 96(11): 946-948. DOI: 10.1097/TP.0b013e3182a4bf20.
    [41]
    ZAHORCHAK AF, MACEDO C, HAMM DE, et al. High PD-L1/CD86 MFI ratio and IL-10 secretion characterize human regulatory dendritic cells generated for clinical testing in organ transplantation[J]. Cell Immunol, 2018, 323: 9-18. DOI: 10.1016/j.cellimm.2017.08.008.
    [42]
    RIQUELME P, HAARER J, KAMMLER A, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity[J]. Nat Commun, 2018, 9(1): 2858. DOI: 10.1038/s41467-018-05167-8.
    [43]
    EVERLY MJ, EVERLY JJ, AREND LJ, et al. Reducing de novo donor-specific antibody levels during acute rejection diminishes renal allograft loss[J]. Am J Transplant, 2009, 9(5): 1063-1071. DOI: 10.1111/j.1600-6143.2009.02577.x.
    [44]
    GOODE I, XU H, ILDSTAD ST. Regulatory B cells: the new "it" cell[J]. Transplant Proc, 2014, 46(1): 3-8. DOI: 10.1016/j.transproceed.2013.08.075.
    [45]
    ÖZKAN B, LIM H, PARK SG. Immunomodulatory function of myeloid-derived suppressor cells during B cell-mediated immune responses[J]. Int J Mol Sci, 2018, 19(5):E1468. DOI: 10.3390/ijms19051468.
    [46]
    PARK MJ, LEE SH, KIM EK, et al. Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the sanroque mouse model of systemic lupus erythematosus[J]. Arthritis Rheumatol, 2016, 68(11): 2717-2727. DOI: 10.1002/art.39767.
    [47]
    SHEN M, WANG J, YU W, et al. A novel MDSC-induced PD-1-PD-L1+ B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties[J]. Oncoimmunology, 2018, 7(4):e1413520. DOI: 10.1080/2162402X.2017.1413520.
    [48]
    GAZDIC M, SIMOVIC MARKOVIC B, VUCICEVIC L, et al. Mesenchymal stem cells protect from acute liver injury by attenuating hepatotoxicity of liver natural killer T cells in an inducible nitric oxide synthase- and indoleamine 2, 3-dioxygenase-dependent manner[J]. J Tissue Eng Regen Med, 2018, 12(2): e1173-e1185. DOI: 10.1002/term.2452.
    [49]
    XUE Q, YAN Y, ZHANG R, et al. Regulation of iNOS on immune cells and its role in diseases[J]. Int J Mol Sci, 2018, 19(12):E3805. DOI: 10.3390/ijms19123805.
    [50]
    CZYSTOWSKA-KUZMICZ M, SOSNOWSKA A, NOWIS D, et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma[J]. Nat Commun, 2019, 10(1): 3000. DOI: 10.1038/s41467-019-10979-3.
    [51]
    NELP MT, KATES PA, HUNT JT, et al. Immune-modulating enzyme indoleamine 2, 3-dioxygenase is effectively inhibited by targeting its apo-form[J]. Proc Natl Acad Sci U S A, 2018, 115(13): 3249-3254. DOI: 10.1073/pnas.1719190115.
    [52]
    MOUGIAKAKOS D, JITSCHIN R, VON BAHR L, et al. Immunosuppressive CD14+HLADRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation[J]. Leukemia, 2013, 27(2): 377-388. DOI: 10.1038/leu.2012.215.
    [53]
    MAEDA A, EGUCHI H, NAKAHATA K, et al. Monocytic MDSCs regulate macrophage-mediated xenogenic cytotoxicity[J]. Transpl Immunol, 2015, 33(2): 140-145. DOI: 10.1016/j.trim.2015.07.002.
    [54]
    WANG X, BI Y, XUE L, et al. The calcineurin-NFAT axis controls allograft immunity in myeloid-derived suppressor cells through reprogramming T cell differentiation[J]. Mol Cell Biol, 2015, 35(3): 598-609. DOI: 10.1128/MCB.01251-14.z
    [55]
    HOLMGAARD RB, ZAMARIN D, LI Y, et al. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner[J]. Cell Rep, 2015, 13(2): 412-424. DOI: 10.1016/j.celrep.2015.08.077.
    [56]
    SUN C, MEZZADRA R, SCHUMACHER TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. DOI: 10.1016/j.immuni.2018.03.014.
    [57]
    DENG L, LIANG H, BURNETTE B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice[J]. J Clin Invest, 2014, 124(2): 687-695. DOI: 10.1172/JCI67313.
    [58]
    GAO W, DEMIRCI G, STROM TB, et al. Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term islet allograft survival[J]. Transplantation, 2003, 76(6): 994-999. doi: 10.1097/01.TP.0000085010.39567.FB
    [59]
    LIGOCKI AJ, NIEDERKORN JY. Advances on non-CD4+ Foxp3+ T regulatory cells: CD8+, type 1, and double negative T regulatory cells in organ transplantation[J]. Transplantation, 2015, 99(8): 1553-1559.DOI: 10.1097/TP.0000000000000813.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (442) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return