Volume 11 Issue 3
May  2020
Turn off MathJax
Article Contents
Liu Weiwang, Wang Xiao, Li Chuanchang. Research progress on carbapenem-resistant Klebsiella pneumoniae infection in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(3): 405-412. doi: 10.3969/j.issn.1674-7445.2020.03.015
Citation: Liu Weiwang, Wang Xiao, Li Chuanchang. Research progress on carbapenem-resistant Klebsiella pneumoniae infection in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(3): 405-412. doi: 10.3969/j.issn.1674-7445.2020.03.015

Research progress on carbapenem-resistant Klebsiella pneumoniae infection in organ transplantation

doi: 10.3969/j.issn.1674-7445.2020.03.015
More Information
  • Corresponding author: Li Chuanchang E-mail:lichuanchang@csu.edu.cn
  • Received Date: 2020-02-22
    Available Online: 2021-01-19
  • Publish Date: 2020-05-15
  • Klebsiella pneumoniae (KP) is a common conditional pathogen, and also one of the common pathogens causing infection in immunocompromised patients, with its infection rate increasing year by year. Carbapenem antibiotics are effective drugs to control KP infection. But with the widespread use of carbapenem antibiotics, carbapenemresistant Klebsiella pneumoniae (CRKP) appears and increases year by year. Organ transplant recipients are at high risk of CRKP infection due to the suppressed immune system. Once drug-resistant bacteria infection occurs, it is often difficult to control and the survival rate of transplant organs is reduced, which brings great challenges to clinical treatment. In this article, the current status and treatment progress of CRKP infection in organ transplantation are summarized.

     

  • loading
  • [1]
    RUSSO TA, MARR CM. Hypervirulent Klebsiella pneumoniae[J]. Clin Microbiol Rev, 2019, 32(3): e00001-19. DOI: 10.1128/CMR.00001-19.
    [2]
    WANG Y, LEI H, ZHANG Y, et al. Epidemiology of carbapenem-resistant Klebsiella pneumoniae bloodstream infections after renal transplantation from donation after cardiac death in a Chinese hospital: a case series analysis[J]. Antimicrob Resist Infect Control, 2018, 7:66. DOI: 10.1186/s13756-018-0355-8.
    [3]
    李继红, 时东彦, 李媛媛, 等.2015-2017年耐碳青霉烯类肺炎克雷伯菌耐药变迁及流行调查[J].中国抗生素杂志, 2018, 43(5):572-576. DOI:10.3969/j.issn.1001-8689. 2018.05.014.

    LI JH, SHI DY, LI YY, et al. Epidemiological characteristics of nosocomial infections and resistance surveillance of carbapenem-resistant Klebsiella pneumoniae from 2015 to 2017[J]. Chin J Antibiot, 2018, 43(5):572-576. DOI: 10.3969/j.issn.1001-8689.2018.05.014
    [4]
    胡付品, 郭燕, 朱德妹, 等.2017年CHINET中国细菌耐药性监测[J].中国感染与化疗杂志, 2018, 18(3):241-251.DOI: 10.16718/j.1009-7708.2018.03.001.

    HU FP, GUO Y, ZHU DM, et al. Surveillance of bacterial resistance in China from CHINET 2017[J]. Chin J Infect Chemother, 2018, 18(3):241-251. DOI: 10.16718/j.1009-7708.2018.03.001.
    [5]
    XU L, SUN X, MA X. Systematic review and Meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae[J]. Ann Clin Microbiol Antimicrob, 2017, 16(1):18. DOI: 10.1186/s12941-017-0191-3.
    [6]
    李钢, 李超, 解俊杰, 等.供者来源CRKP导致肾移植受者感染、出血的诊疗经验[J].中华器官移植杂志, 2018, 39(10):582-585.DOI:10.3760/cma.j.issn.0254-1785. 2018.10.002.

    LI G, LI C, XIE JJ, et al. Experience in diagnosis and treatment of infection and bleeding caused by donor-derived CRKP in kidney transplant recipients[J]. Chin J Organ Transplant, 2018, 39(10):582-585. DOI: 10.3760/cma.j.issn.0254-1785.2018.10.002.
    [7]
    陈小松, 韩龙志, 钱永兵, 等.供体来源碳青霉烯酶类耐药肺炎克雷伯杆菌感染——肝肾移植的差异[J/CD].实用器官移植电子杂志, 2018, 6(1): 45-48.DOI: 10.3969/j.issn.2095-5332.2018.01.011.

    CHEN XS, HAN LZ, QIAN YB, et al. The difference between liver and kidney transplantation: donor derived infection of carbapenemresistant Klebsiella pneumonia[J/CD]. Pract J Organ Transplant (Electr Vers), 2018, 6(1): 45-48. DOI: 10.3969/j.issn.2095-5332.2018.01.011
    [8]
    FISHMAN JA, GROSSI PA. Donor-derived infection--the challenge for transplant safety[J]. Nat Rev Nephrol, 2014, 10(11):663-672. DOI: 10.1038/nrneph.2014.159.
    [9]
    BARTOLETTI M, GIANNELLA M, TEDESCHI S, et al. Multidrug-resistant bacterial infections in solid organ transplant candidates and recipients[J]. Infect Dis Clin North Am, 2018, 32(3):551-580. DOI: 10.1016/j.idc.2018.04.004.
    [10]
    LI Y, SHEN H, ZHU C, et al. Carbapenem-resistant Klebsiella pneumoniae infections among ICU admission patients in central China: prevalence and prediction model[J]. Biomed Res Int, 2019:9767313. DOI: 10.1155/2019/9767313.
    [11]
    PROCACCIO F, MASIERO L, VESPASIANO F, et al. Organ donor screening for carbapenem-resistant Gram-negative bacteria in Italian intensive care units: the DRIn study[J]. Am J Transplant, 2020, 20(1):262-273. DOI: 10.1111/ajt.15566.
    [12]
    BENAMU E, PEREIRA MR, TAIMUR S, et al. Isolation of antibiotic-resistant Gram-negative organisms from donor respiratory culture does not impact non-lung solid organ recipient management[J]. Clin Transplant, 2019, 33(8):e13646. DOI: 10.1111/ctr.13646.
    [13]
    YU X, WANG R, PENG W, et al. Incidence, distribution and clinical relevance of microbial contamination of preservation solution in deceased kidney transplant recipients: a retrospective cohort study from China[J]. Clin Microbiol Infect, 2019, 25(5):595-600. DOI: 10.1016/j.cmi.2018.12.040.
    [14]
    GREEN M, COVINGTON S, TARANTO S, et al. Donor-derived transmission events in 2013: a report of the Organ Procurement Transplant Network Ad Hoc Disease Transmission Advisory Committee[J]. Transplantation, 2015, 99(2):282-287. DOI: 10.1097/TP.0000000000000584.
    [15]
    ISON MG, GROSSI P, AST Infectious Diseases Community of Practice. Donor-derived infections in solid organ transplantation[J]. Am J Transplant, 2013, 13 (Suppl 4):22-30. DOI: 10.1111/ajt.12095.
    [16]
    中华医学会器官移植学分会.器官移植免疫抑制剂临床应用技术规范(2019版)[J].器官移植, 2019, 10(3):213-226. DOI: 10.3969/j.issn.1674-7445.2019.03.001.

    Branch of Organ Transplantation of Chinese Medical Association. Technical specification for clinical application of immunosuppressive agents in organ transplantation (2019 edition)[J]. Organ Transplant, 2019, 10(3):213-226. DOI: 10.3969/j.issn.1674-7445.2019.03.001
    [17]
    CHEN GD, LAI XQ, KO DS, et al. Comparison of efficacy and safety between rabbit anti-thymocyte globulin and anti-T lymphocyte globulin in kidney transplantation from donation after cardiac death: a retrospective cohort study[J]. Nephrology (Carlton), 2015, 20(8):539-543.DOI: 10.1111/nep.12469.
    [18]
    BASSETTI M, GIACOBBE DR, GIAMARELLOU H, et al. Management of KPC-producing Klebsiella pneumoniae infections[J]. Clin Microbiol Infect, 2018, 24(2):133-144.DOI: 10.1016/j.cmi.2017.08.030.
    [19]
    PETROSILLO N, TAGLIETTI F, GRANATA G. Treatment options for colistin resistant Klebsiella pneumoniae: present and future[J]. J Clin Med, 2019, 8(7): E934. DOI: 10.3390/jcm8070934.
    [20]
    DOIY, VAN DUIN D. Polymyxin resistance in Klebsiella pneumoniae: complexity at every level[J]. Clin Infect Dis, 2019:ciz627. DOI: 10.1093/cid/ciz627.
    [21]
    LAGERBÄCK P, KHINE WW, GISKE CG, et al. Evaluation of antibacterial activities of colistin, rifampicin and meropenem combinations against NDM-1-producing Klebsiella pneumoniae in 24 h in vitro time-kill experiments[J]. J Antimicrob Chemother, 2016, 71(8):2321-2325.DOI: 10.1093/jac/dkw213.
    [22]
    ABDELSALAM MFA, ABDALLA MS, EL-ABHAR HSE. Prospective, comparative clinical study between high-dose colistin monotherapy and colistin-meropenem combination therapy for treatment of hospital-acquired pneumonia and ventilator-associated pneumonia caused by multidrug-resistant Klebsiella pneumoniae[J]. J Glob Antimicrob Resist, 2018, 15:127-135. DOI: 10.1016/j.jgar.2018.07.003.
    [23]
    HE T, WANG R, LIU D, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans[J]. Nat Microbiol, 2019, 4(9):1450-1456. DOI: 10.1038/s41564-019-0445-2.
    [24]
    HE F, SHI Q, FU Y, et al. Tigecycline resistance caused by rpsJ evolution in a 59-year-old male patient infected with KPC-producing Klebsiella pneumoniae during tigecycline treatment[J]. Infect Genet Evol, 2018, 66:188-191.DOI: 10.1016/j.meegid.2018.09.025.
    [25]
    RODRÍGUEZ-GASCÓN A, CANUT-BLASCO A. Deciphering pharmacokinetics and pharmacodynamics of fosfomycin[J]. Rev Esp Quimioter, 2019, 32 (Suppl 1):19-24. http://cn.bing.com/academic/profile?id=43fcdb2b82b8628083381dca549320a0&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    MATZI V, LINDENMANN J, PORUBSKY C, et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients[J]. J Antimicrob Chemother, 2010, 65(5):995-998.DOI: 10.1093/jac/dkq070.
    [27]
    SCHINTLER MV, TRAUNMÜLLER F, METZLER J, et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection[J]. J Antimicrob Chemother, 2009, 64(3):574-578.DOI: 10.1093/jac/dkp230.
    [28]
    CRÉMIEUX AC, DINH A, NORDMANN P, et al. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2019, 74(9):2666-2675. DOI: 10.1093/jac/dkz257.
    [29]
    YU W, ZHOU K, GUO L, et al. In vitro pharmacokinetics/pharmacodynamics evaluation of fosfomycin combined with amikacin or colistin against KPC2-producing Klebsiella pneumoniae[J]. Front Cell Infect Microbiol, 2017, 7:246.DOI: 10.3389/fcimb.2017.00246.
    [30]
    TUMBARELLO M, VIALE P, VISCOLI C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy[J]. Clin Infect Dis, 2012, 55(7):943-950. DOI: 10.1093/cid/cis588.
    [31]
    JACOBS DM, SAFIR MC, HUANG D, et al. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review[J]. Ann Clin Microbiol Antimicrob, 2017, 16(1):76. DOI: 10.1186/s12941-017-0249-2.
    [32]
    DAN JM, MENDLER MH, HEMMING AW, et al. High-dose tigecycline and colistin for successful treatment of disseminated carbapenem-resistant Klebsiella pneumoniae infection in a liver transplant recipient[J]. BMJ Case Rep, 2014:bcr2014205865.DOI: 10.1136/bcr-2014-205865.
    [33]
    MILLS JP, WILCK MB, WEIKERT BC, et al. Successful treatment of a disseminated infection with extensively drug-resistant Klebsiella pneumoniae in a liver transplant recipient with a fosfomycin-based multidrug regimen[J]. Transpl Infect Dis, 2016, 18(5):777-781. DOI: 10.1111/tid.12578.
    [34]
    QIAN Y, ZHANG H, CHEN X, et al. Graft hepatic artery rupture due to carbapenem-resistant Klebsiella pneumoniae infection after liver transplant[J]. Exp Clin Transplant, 2019, DOI: 10.6002/ect.2018.0384 [Epubahead of print].
    [35]
    KARAISKOS I, LAGOU S, PONTIKIS K, et al. The ''old'' and the ''new'' antibiotics for MDR Gram-negative pathogens: for whom, when, and how[J]. Front Public Health, 2019, 7:151. DOI: 10.3389/fpubh.2019.00151.
    [36]
    KARAISKOS I, GALANI I, SOULI M, et al. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens[J]. Expert Opin Drug Metab Toxicol, 2019, 15(2):133-149. DOI: 10.1080/17425255.2019.1563071.
    [37]
    GALANI I, KARAISKOS I, KARANTANI I, et al. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016[J]. Euro Surveill, 2018, 23(31). DOI: 10.2807/1560-7917.ES.2018.23.30.1700775.
    [38]
    SADER HS, CASTANHEIRA M, FLAMM RK. Antimicrobial activity of ceftazidime-avibactam against Gram-negative bacteria isolated from patients hospitalized with pneumonia in U.S. medical centers, 2011 to 2015[J]. Antimicrob Agents Chemother, 2017, 61(4):e02083-16.DOI: 10.1128/AAC.02083-16.
    [39]
    TUMBARELLO M, TRECARICHI EM, CORONA A, et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae[J]. Clin Infect Dis, 2019, 68(3):355-364.DOI: 10.1093/cid/ciy492.
    [40]
    ZHONG H, ZHAO XY, ZHANG ZL, et al. Evaluation of the efficacy and safety of ceftazidime/avibactam in the treatment of Gram-negative bacterial infections: a systematic review and Meta-analysis[J]. Int J Antimicrob Agents, 2018, 52(4):443-450. DOI: 10.1016/j.ijantimicag.2018.07.004.
    [41]
    SIMON MS, SFEIR MM, CALFEE DP, et al. Cost-effectiveness of ceftazidime-avibactam for treatment of carbapenem-resistant Enterobacteriaceae bacteremia and pneumonia[J]. Antimicrob Agents Chemother, 2019: AAC.00897-19. DOI: 10.1128/AAC.00897-19.
    [42]
    吴佳晋, 应亮, 李大伟, 等.肾移植供体来源耐药肺炎克雷伯杆菌感染13例救治经验[J/CD].实用器官移植电子杂志, 2018, 6(1): 9-12. DOI: 10.3969/j.issn.2095-5332.2018.01.003.

    WU JJ, YING L, LI DW, et al. Medical experience in 13 cases of donor-derived drug-resistant Klebsiella pneumoniae infection[J/CD]. Pract J Organ Transplant (Electr Vers), 2018, 6(1): 9-12. DOI: 10.3969/j.issn.2095-5332.2018.01.003.
    [43]
    CANI E, MOUSSAVI F, OCHERETYANER E, et al. Carbapenem-resistant Klebsiella pneumoniae vertebral osteomyelitis in a renal transplant recipient treated with ceftazidime-avibactam[J]. Transpl Infect Dis, 2018, 20(2):e12837. DOI: 10.1111/tid.12837.
    [44]
    JACOBS DM, DITURSI S, RUH C, et al. Combination treatment with extended-infusion ceftazidime/avibactam for a KPC-3-producing Klebsiella pneumoniae bacteraemia in a kidney and pancreas transplant patient[J]. Int J Antimicrob Agents, 2016, 48(2):225-227. DOI: 10.1016/j.ijantimicag.2016.06.002.
    [45]
    CAMARGO JF, SIMKINS J, BEDUSCHI T, et al. Successful treatment of carbapenemase-producing pandrug-resistant Klebsiella pneumoniae bacteremia[J]. Antimicrob Agents Chemother, 2015, 59(10):5903-5908. DOI: 10.1128/AAC.00655-15.
    [46]
    BIAGI M, WU T, LEE M, et al. Searching for the optimal treatment for metallo- and serine-β-lactamase producing enterobacteriaceae: aztreonam in combination with ceftazidime-avibactam or meropenem-vaborbactam[J]. Antimicrob Agents Chemother, 2019:AAC.01426-19. DOI: 10.1128/AAC.01426-19.
    [47]
    STEWART J, SNOEYENBOS NEWMAN G, JAIN R, et al. Transplant tourism complicated by life-threatening New Delhi metallo-β-lactamase-1 infection[J]. Am J Transplant, 2019, 19(4):1224-1228.DOI: 10.1111/ajt.15136.
    [48]
    ZHANG P, SHI Q, HU H, et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China[J]. Clin Microbiol Infect, 2020, 26(1):124.e1-124.e4. DOI: 10.1016/j.cmi.2019.08.020.
    [49]
    PAPADIMITRIOU-OLIVGERIS M, BARTZAVALI C, LAMBROPOULOU A, et al. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam[J]. J Antimicrob Chemother, 2019, 74(7):2051-2054. DOI: 10.1093/jac/dkz125.
    [50]
    MIKHAIL S, SINGH NB, KEBRIAEI R, et al. Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2019, 63(8).DOI: 10.1128/AAC.00779-19.
    [51]
    GÓRSKI A, MIĘDZYBRODZKI R, JOŃCZYK-MATYSIAK E, et al. The fall and rise of phage therapy in modern medicine[J]. Expert Opin Biol Ther, 2019, 19(11):1115-1117. DOI: 10.1080/14712598.2019.1651287.
    [52]
    吴楠楠, 朱同玉.噬菌体在实体器官移植中的应用[J].器官移植, 2019, 10(4):410-415. DOI: 10.3969/j.issn.1674-7445.2019.04.010.WU

    NN, ZHU TY. Application of phage in solid organ transplantation[J]. Organ Transplant, 2019, 10(4):410-415. DOI: 10.3969/j.issn.1674-7445.2019.04.010
    [53]
    DEDRICK RM, GUERRERO-BUSTAMANTE CA, GARLENA RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J].NatMed, 2019, 25(5):730-733. DOI: 10.1038/s41591-019-0437-z.
    [54]
    LAW N, LOGAN C, YUNG G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient[J]. Infection, 2019, 47(4):665-668.DOI: 10.1007/s15010-019-01319-0.
    [55]
    ASLAM S, COURTWRIGHT AM, KOVAL C, et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients[J]. Am J Transplant, 2019, 19(9):2631-2639. DOI: 10.1111/ajt.15503.
    [56]
    PENG H, CHEN IA. Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages[J]. ACS Nano, 2019, 13(2):1244-1252. DOI: 10.1021/acsnano.8b06395.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (226) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return