Volume 11 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Shi Bingyi, Chen Wen, Liu Zhijia. Research progress on biomarkers of rejection risk in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(2): 194-198. doi: 10.3969/j.issn.1674-7445.2020.02.003
Citation: Shi Bingyi, Chen Wen, Liu Zhijia. Research progress on biomarkers of rejection risk in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(2): 194-198. doi: 10.3969/j.issn.1674-7445.2020.02.003

Research progress on biomarkers of rejection risk in organ transplantation

doi: 10.3969/j.issn.1674-7445.2020.02.003
More Information
  • Corresponding author: Shi Bingyi, Email: shibingyi666@126.com
  • Received Date: 2020-02-04
    Available Online: 2021-01-19
  • Publish Date: 2020-03-15
  • Rejection is the main cause of transplantation failure. Currently, the specificity and sensitivity of clinical parameters are relatively poor, which cannot accurately prompt the exact cause of rejection. It is of great clinical significance to explore novel biomarkers for monitoring the rejection. In this article, the latest research progress on the biomarkers of rejection risk in organ transplantation were summarized from the perspectives of transplantation pathology, immune cells and regulatory immune cells, non-human leukocyte antigen antibodies, exosomes, cell-free DNA and combination gene prediction, aiming to provide reference for early warning and treatment of rejection in organ transplantation.

     

  • loading
  • [1]
    PASSERINI P, MALVICA S, TRIPODI F, et al. Membranous nephropathy (MN) recurrence after renal transplantation[J]. Front Immunol, 2019, 10:1326. DOI: 10.3389/fimmu.2019.01326.
    [2]
    HAAS M, LOUPY A, LEFAUCHEUR C, et al. The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials[J]. Am J Transplant, 2018, 18(2):293-307. DOI: 10.1111/ajt.14625.
    [3]
    SIS B, JHANGRI GS, BUNNAG S, et al. Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4d staining[J]. Am J Transplant, 2009, 9(10):2312-2323. DOI: 10.1111/j.1600-6143.2009.02761.x.
    [4]
    LOUPY A, DUONG VAN HUYEN JP, HIDALGO L, et al. Gene expression profiling for the identification and classification of antibody-mediated heart rejection[J]. Circulation, 2017, 135(10):917-935. DOI: 10.1161/CIRCULATIONAHA.116.022907.
    [5]
    HERMSEN M, DE BEL T, DEN BOER M, et al. Deep learning-based histopathologic assessment of kidney tissue[J]. J Am Soc Nephrol, 2019, 30(10):1968-1979. DOI: 10.1681/ASN.2019020144.
    [6]
    LOUPY A, AUBERT O, ORANDI BJ, et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study[J]. BMJ, 2019, 366: l4923. DOI: 10.1136/bmj.l4923.
    [7]
    CHEN W, BAI J, HUANG H, et al. Low proportion of follicular regulatory T cell in renal transplant patients with chronic antibody-mediated rejection[J]. Sci Rep, 2017, 7(1):1322. DOI: 10.1038/s41598-017-01625-3.
    [8]
    LUQUE S, LÚCIA M, MELILLI E, et al. Value of monitoring circulating donor-reactive memory B cells to characterize antibody-mediated rejection after kidney transplantation[J]. Am J Transplant, 2019, 19(2):368-380. DOI: 10.1111/ajt.15055.
    [9]
    石炳毅.调节性免疫细胞网络在移植免疫中的作用[J].中华医学杂志, 2011, 91(44):3154-3157.DOI:10. 3760/cma.j.issn.0376-2491.2011.44.018.

    SHI BY. The role of regulatory immune cell network in transplantation immunity[J]. Natl Med J China, 2011, 91(44): 3154-3157. DOI: 10.3760/cma.j.issn.0376-2491.2011.44.018.
    [10]
    MCRAE JL, CHIA JS, POMMEY SA, et al. Evaluation of CD4+ CD25+/- CD39+ T-cell populations in peripheral blood of patients following kidney transplantation and during acute allograft rejection[J]. Nephrology (Carlton), 2017, 22(7):505-512. DOI: 10.1111/nep.12894.
    [11]
    SAITO T, NISHIKAWA H, WADA H, et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers[J]. Nat Med, 2016, 22(6):679-684. DOI: 10.1038/nm.4086.
    [12]
    YANG S, SHENG X, XIANG D, et al. CD150highTreg cells may attenuate graft versus host disease and intestinal cell apoptosis after hematopoietic stem cell transplantation[J]. Am J Transl Res, 2019, 11(3):1299-1310. http://www.ncbi.nlm.nih.gov/pubmed/30972163
    [13]
    LINO AC, DANG VD, LAMPROPOULOU V, et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells[J]. Immunity, 2018, 49(1):120-133. DOI: 10.1016/j.immuni.2018.06.007.
    [14]
    PEARL MH, ZHANG Q, PALMA DIAZ MF, et al. Angiotensin Ⅱ type 1 receptor antibodies are associated with inflammatory cytokines and poor clinical outcomes in pediatric kidney transplantation[J]. Kidney Int, 2018, 93(1):260-269. DOI: 10.1016/j.kint.2017.06.034.
    [15]
    REINDL-SCHWAIGHOFER R, HEINZEL A, OBERBAUER R. Genomic mismatch at LIMS1 locus and kidney allograft rejection[J]. N Engl J Med, 2019, 381(9): e16. DOI: 10.1056/NEJMc1908072.
    [16]
    LI X, LI JJ, YANG JY, et al. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model[J]. PLoS One, 2012, 7(8): e44045. DOI: 10.1371/journal.pone.0044045.
    [17]
    WEN D, PENG Y, LIU D, et al. Mesenchymal stem cell and derived exosome as small RNA carrier and immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238:166-175. DOI: 10.1016/j.jconrel.2016.07.044.
    [18]
    SHARMA M, LIU W, PERINCHERI S, et al. Exosomes expressing the self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced by antibodies to cardiac myosin[J]. Am J Transplant, 2018, 18(7):1626-1635. DOI: 10.1111/ajt.14650.
    [19]
    YANG J, BI L, HE X, et al. Follicular helper T cell derived exosomes promote B cell proliferation and differentiation in antibody-mediated rejection after renal transplantation[J]. Biomed Res Int, 2019: 6387924. DOI: 10.1155/2019/6387924.
    [20]
    SCHÜTZ E, FISCHER A, BECK J, et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study[J]. PLoS Med, 2017, 14(4):e1002286. DOI: 10.1371/journal.pmed.1002286.
    [21]
    BECK J, BIERAU S, BALZER S, et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury[J]. Clin Chem, 2013, 59(12):1732-1741. DOI: 10.1373/clinchem.2013.210328.
    [22]
    SIGDEL TK, ARCHILA FA, CONSTANTIN T, et al. Optimizing detection of kidney transplant injury by assessment of donor-derived cell-free DNA via massively multiplex PCR[J]. J Clin Med, 2018, 8(1): E19. DOI: 10.3390/jcm8010019.
    [23]
    VAN LOON E, GAZUT S, YAZDANI S, et al. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: a multicentre, prospective study[J]. EBioMedicine, 2019, 46:463-472. DOI: 10.1016/j.ebiom. 2019.07.028.
    [24]
    ZHANG W, YI Z, KEUNG KL, et al. A peripheral blood gene expression signature to diagnose subclinical acute rejection[J]. J Am Soc Nephrol, 2019, 30(8):1481-1494. DOI: 10.1681/ASN.2018111098.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (330) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return