Volume 9 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
Ma Xihui, Gao Yu, Han Yong, et al. Diagnostic value of flow cytometry in postoperative infection after renal transplantation[J]. ORGAN TRANSPLANTATION, 2018, 9(2): 137-141,155. doi: 10.3969/j.issn.1674-7445.2018.02.008
Citation: Ma Xihui, Gao Yu, Han Yong, et al. Diagnostic value of flow cytometry in postoperative infection after renal transplantation[J]. ORGAN TRANSPLANTATION, 2018, 9(2): 137-141,155. doi: 10.3969/j.issn.1674-7445.2018.02.008

Diagnostic value of flow cytometry in postoperative infection after renal transplantation

doi: 10.3969/j.issn.1674-7445.2018.02.008
More Information
  • Corresponding author: Xiao Li, Email:xiaolilab309@163.com
  • Received Date: 2017-12-10
    Available Online: 2021-01-19
  • Publish Date: 2018-03-15
  •   Objective  To assess the value of flow cytometry in the diagnosis of postoperative infection following renal transplantation.  Methods  According to postoperative imaging findings and laboratory examination outcomes, 51 recipients undergoing the first renal transplantation were divided into the bacteria (n=33), fungus (n=9) and BK virus (n=9) groups. Twenty-eight recipients with stable conditions after renal transplantation were assigned into the stable group. Flow cytometry was adopted to detect the percentage and absolute counting of lymphocyte subpopulation in the peripheral blood of recipients in each group. Renal function, percentage and absolute counting of lymphocyte subpopulation in the peripheral blood were statistically compared among different groups. Receiver operating characteristic (ROC) curve was drawn to evaluate the diagnostic value of the percentage and absolute counting of lymphocyte subpopulation in infectious diseases after renal transplantation.  Results  Compared with the stable group, the serum creatinine (Scr) and blood urea nitrogen (BUN) levels in the bacteria, fungus and BK virus groups were significantly up-regulated, respectively (P=0.035, 0.007, 0.024; 0.037, 0.006, 0.032). Compared with the stable group, the percentage of CD16+ CD56+ natural killer (NK) cells was significantly declined in the bacterial (P=0.036) and fungus groups (P=0.015), and the proportion of CD4+ /CD8+T cells was dramatically decreased in the fungus group (P=0.004). Compared with the bacterial group, the percentage of CD3+ CD8+T cells was significantly elevated (P=0.013 and 0.008), the proportion of CD3+ CD4+T cells was considerably declined (P=0.003 and 0.010), and the percentage of CD4+/CD8+T cells was significantly declined (P=0.003 and 0.005) in the fungus and BK virus groups. Compared with the stable group, the quantity of CD3+ T cells, CD3+ CD8+T cells and CD16+ CD56+ NK cells was significantly declined in the bacterial, fungus and BK virus groups, respectively (P=0.025, 0.002, 0.003; 0.015, 0.005, 0.006; 0.001, 0.001, 0.031). In addition, the quantity of CD3+ CD4+T cells was considerably decreased in the fungus and BK virus groups (P=0.001, 0.003). The quantity of CD19+ B cells was significantly reduced in the BK virus group (P=0.019). Compared with the bacterial group, the quantity of CD3+ CD4+T cells was considerably lower in the fungus group (P=0.023). ROC curve analysis revealed that the quantity of CD3+ CD4+T cells [area under curve(AUC)=0.8492] and CD16+ CD56+ NK cells (AUC=0.8889) yielded relatively high accuracy in the diagnosis of fungal infection. The quantity of CD3+ T cells (AUC=0.8472), CD3+ CD4+T cells (AUC=0.8452) and CD19+ B cells (AUC=0.8115) yielded relatively high accuracy in the diagnosis of BK virus infection.  Conclusions  Flow cytometry detection of the lymphocyte subpopulation in peripheral blood can evaluate the immune function of patients. Absolute counting of lymphocyte subpopulation can directly assess the degree of immunity. These two combined parameters provide guiding significance for the diagnosis and differential diagnosis of infectious diseases in recipients after renal transplantation.

     

  • loading
  • [1]
    FERNÁNDEZ-RUIZ M, LÓPEZ-MEDRANO F, ALLENDE LM, et al. Immune risk phenotype in kidney transplant recipients: a reliable surrogate for premature immune senescence and increased susceptibility to infection?[J]. Transpl Infect Dis, 2016, 18(6): 968-970. DOI: 10.1111/tid.12600.
    [2]
    AUGUSTO JF, GARNIER AS, DEMISELLE J, et al. Hypogammaglobulinemia and risk of severe infection in kidney transplant recipients[J].Transpl Infect Dis, 2016, 18(5): 741-751. DOI: 10.1111/tid.12593.
    [3]
    KIR O, ZEYTINOĞLU A, ARDA B, et al. Impact of prophylaxis vs pre-emptive approach for cytomegalovirus infection in kidney transplant recipients[J]. Transplant Proc, 2017, 49(3): 537-540. DOI: 10.1016/j.transproceed.2017.01.027.
    [4]
    SIMARD-MEILLEUR MC, BODSON-CLERMONT P, ST-LOUIS G, et al. Stabilization of renal function after the first year of follow-up in kidney transplant recipients treated for significant BK polyomavirus infection or BK polyomavirus-associated nephropathy[J]. Transpl Infect Dis, 2017, 19(3). DOI: 10.1111/tid.12681.
    [5]
    李详立, 王爱萍.监测T淋巴细胞亚群在评估肾移植术后免疫状态的临床意义[J].医药前沿, 2015, 5(33): 168-169. DOI: 10.3969/j.issn.2095-1752.2015.33.149.

    LI XL, WANG AP. Clinical significance of monitoring T lymphocyte subgroup in evaluating the immune status after renal transplantation[J]. J Front Med, 2015, 5(33): 168-169. DOI: 10.3969/j.issn.2095-1752.2015.33.149.
    [6]
    CHO JH, YOON YD, JANG HM, et al. Immunologic monitoring of T-lymphocyte subsets and HLA-Dr-positive monocytes in kidney transplant recipients: a prospective, observational cohort study[J]. Medicine (Baltimore), 2015, 94(44): e1902. DOI: 10.1097/MD.0000000000001902.
    [7]
    范宇, 石炳毅, 钱叶勇, 等.尿液与血液病毒载量在肾移植受者BK病毒性肾病诊断中的应用[J].中华器官移植杂志, 2013, 34(10): 595-599. DOI: 10.3760/cma.j.issn.0254-1785.2013.10.005.

    FAN Y, SHI BY, QIAN YY, et al. The cut-off value of BK virus DNA load in urine or plasma for diagnosis of BKVN in renal transplantation recipients[J]. Chin J Organ Transplant, 2013, 34(10): 595-599. DOI: 10.3760/cma.j.issn.0254-1785.2013.10.005.
    [8]
    韩永, 蔡明, 钱叶勇, 等.肾移植后BK病毒相关性肾病的早期诊断[J].中国组织工程研究, 2012, 16(53): 9916-9920. DOI: 10.3969/j.issn.2095-4344.2012.53.007.

    HAN Y, CAI M, QIAN YY, et al. Early diagnosis of BK virus associated nephropathy after renal transplantation[J]. Chin J Tissue Eng Res, 2012, 16(53): 9916-9920. DOI: 10.3969/j.issn.2095-4344.2012.53.007.
    [9]
    高钰, 肖漓, 石炳毅, 等.淋巴细胞亚群在肾移植术后巨细胞病毒感染患者中的表达及意义[J].现代检验医学杂志, 2013, 28(1): 21-23. DOI: 10.3969/j.issn.1671-7414.2013.01.007.

    GAO Y, XIAO L, SHI BY, et al. Expression and significance of lymphocyte subsets in renal transplantation patients with cytomegalovirus infection[J]. J Mod Lab Med, 2013, 28(1): 21-23. DOI: 10.3969/j.issn.1671-7414.2013.01.007.
    [10]
    刘鹏, 钱冬萌, 王桐梅, 等.肾移植术后HCMV感染与淋巴细胞亚群及肾功能的相关性[J].现代生物医学进展, 2013, 13(25): 4921-4924. http://mall.cnki.net/magazine/Article/SWCX201325032.htm

    LIU P, QIAN DM, WANG TM, et al. Correlation between HCMV infection with lymphocyte subsets and renal function after renal transplantation[J]. Adv Mod Biomed, 2013, 13(25): 4921-4924. http://mall.cnki.net/magazine/Article/SWCX201325032.htm
    [11]
    王旭珍, 薛武军, 田晓辉, 等.肾移植后淋巴细胞亚群的变化及其对诊断急性排斥反应和CMV感染的意义[J].中华器官移植杂志, 2013, 34(11): 651-654. DOI: 10.3760/cma.j.issn.0254-1785.2013.11.004.

    WANG XZ, XUE WJ, TIAN XH, et al. Clinical application of lymphocytes subsets monitoring in differential diagnosis of acute rejection and CMV infection in kidney transplant recipients[J]. Chin J Organ Transplant, 2013, 34(11): 651-654. DOI: 10.3760/cma.j.issn.0254-1785.2013.11.004.
    [12]
    许足三, 陈善群, 孙建明, 等.肾移植术后受者T淋巴细胞亚群监测及临床分析[J].中国医学工程, 2009, 17(5): 362-364. http://d.wanfangdata.com.cn/Periodical_jxyxyxb200103015.aspx

    XU ZS, CHEN SQ, SUN JM, et al. T-lymphocyte subsets analysis for evaluation immunosuppression status in recipients of renal transplantation[J]. Chin Med Eng, 2009, 17(5): 362-364. http://d.wanfangdata.com.cn/Periodical_jxyxyxb200103015.aspx
    [13]
    马锡慧, 黄海燕, 高钰, 等.流式微球分析技术联合检测Cys C、NGAL方法的建立及其在肾移植术后CMV感染患者中的应用[J].器官移植, 2016, 7(3): 191-195. DOI: 10.3969/j.issn.1674-7445.2016.03.006.

    MA XH, HUANG HY, GAO Y, et al. Establishment of cytometric bead assay combined detection on Cys C and NGAL and its application in CMV-infected patients after renal transplantation[J]. Organ Transplant, 2016, 7(3): 191-195. DOI: 10.3969/j.issn.1674-7445.2016.03.006.
    [14]
    陈少艳, 刘基铎, 肖明锋, 等.淋巴细胞亚群检测在感染性疾病中的应用[J].国际检验医学杂志, 2017, 38(2): 206-208. DOI: 10.3969/j.issn.1673-4130.2017.02.022.

    CHEN SY, LIU JD, XIAO MF, et al. Detection of lymphocyte subsets in the application of the infectious diseases[J]. Int J Lab Med, 2017, 38(2): 206-208. DOI: 10.3969/j.issn.1673-4130.2017.02.022.
    [15]
    朱云松, 王尉, 肖远松, 等.T淋巴细胞亚群在肾移植受者术后感染中的动态变化[J].实用医学杂志, 2007, 23(12): 1828-1829. DOI: 10.3969/j.issn.1006-5725. 2007.12.020.

    ZHU YS, WANG W, XIAO YS, et al. The dynamic changes of T lymphocyte subgroups in postoperative infection of renal transplant recipients[J]. J Pract Med, 2007, 23(12): 1828-1829. DOI: 10.3969/j.issn.1006-5725.2007.12.020.
    [16]
    VACHER-COPONAT H, BRUNET C, MOAL V, et al. Tacrolimus/mycophenolate mofetil improved natural killer lymphocyte reconstitution one year after kidney transplant by reference to cyclosporine/azathioprine[J]. Transplantation, 2006, 82(4): 558-566. doi: 10.1097/01.tp.0000229390.01369.4a
    [17]
    CALAROTA SA, ZELINI P, DE SILVESTRI A, et al. Kinetics of T-lymphocyte subsets and posttransplant opportunistic infections in heart and kidney transplant recipients[J]. Transplantation, 2012, 93(1): 112-119. DOI: 10.1097/TP.0b013e318239e90c.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (194) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return