Volume 8 Issue 3
May  2017
Turn off MathJax
Article Contents

doi: 10.3969/j.issn.1674-7445.2017.03.016
  • Received Date: 2017-02-10
    Available Online: 2021-01-19
  • Publish Date: 2017-05-15
  • loading
  • [1]
    Katagi M, Terashima T, Okano J, et al. Hyperglycemia induces abnormal gene expression in hematopoietic stem cells and their progeny in diabetic neuropathy[J]. FEBS Lett, 2014, 588(6):1080-1086. DOI: 10.1016/j.febslet.2014.02.030.
    [2]
    Babizhayev MA, Lankin VZ, Savel'Yeva EL, et al. Diabetes mellitus: novel insights, analysis and interpretation of pathophysiology and complications management with imidazole-containing peptidomimetic antioxidants[J]. Recent Pat Drug Deliv Formul, 2013, 7(3):216-256. doi: 10.2174/1872211307666131117121058
    [3]
    王维, 莫朝辉, 叶斌, 等.新生猪胰岛移植治疗糖尿病病人的临床研究[J].中南大学学报(医学版), 2011, 36(12):1134-1140. DOI: 10.3969/j.issn.1672-7347.2011.12.002.

    Wang W, Mo Z, Ye B, et al. A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients[J]. J Zhongnan Univ(Med Sci), 2011, 36(12):1134-1140. DOI: 10.3969/j.issn.1672-7347.2011.12.002.
    [4]
    Park CG, Bottino R, Hawthorne WJ. Current status of islet xenotransplantation[J]. Int J Surg, 2015, 23 (Pt B):261-266. DOI: 10.1016/j.ijsu.2015.07.703.
    [5]
    Hering BJ, Wijkstrom M, Graham ML, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates[J]. Nat Med, 2006, 12(3):301-303. doi: 10.1038/nm1369
    [6]
    Cardona K, Korbutt GS, Milas Z, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways[J]. Nat Med, 2006, 12(3):304-306. doi: 10.1038/nm1375
    [7]
    Thompson P, Cardona K, Russell M, et al.CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates[J]. Am J Transplant, 2011, 11(5):947-957. DOI: 10.1111/j.1600-6143.2011.03509.x.
    [8]
    Thompson P, Badell IR, Lowe M, et al. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival[J]. Am J Transplant, 2012, 12(7):1765-1775. DOI: 10.1111/j.1600-6143.2012.04031.x.
    [9]
    Shin JS, Kim JM, Kim JS, et al. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets[J]. Am J Transplant, 2015, 15(11):2837-2850. DOI: 10.1111/ajt.13345.
    [10]
    Sun Y, Ma X, Zhou D, et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression[J]. J Clin Invest, 1996, 98(6): 1417-1422. doi: 10.1172/JCI118929
    [11]
    Dufrane D, Goebbels RM, Saliez A, et al. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept[J]. Transplantation, 2006, 81(9):1345-1353. doi: 10.1097/01.tp.0000208610.75997.20
    [12]
    Mandel TE, Koulmanda M, Cozzi E, et al. Transplantation of normal and DAF-transgenic fetal pig pancreas into cynomolgus monkeys[J]. Transplant Proc, 1997, 29(1-2 /01):940. http://www.ncbi.nlm.nih.gov/pubmed/9123596
    [13]
    Komoda H, Miyagawa S, Omori T, et al. Survival of adult islet grafts from transgenic pigs with N-acetylglucosaminyltransferase-Ⅲ (GnT-Ⅲ) in cynomolgus monkeys[J]. Xenotransplantation, 2005, 2(3):209-216. http://europepmc.org/abstract/MED/15807771
    [14]
    van der Windt DJ, Bottino R, Casu A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets[J] Am J Transplant, 2009, 9(12):2716-2726. DOI: 10.1111/j.1600-6143.2009.02850.x.
    [15]
    Thompson P, Badell IR, Lowe M, et al. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function[J]. Am J Transplant, 2011, 11(12):2593-2602. DOI: 10.1111/j.1600-6143.2011.03720.x.
    [16]
    Chen Y, Stewart JM, Gunthart M, et al. Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors[J]. Xenotransplantation, 2014, 21(3): 244-253. DOI: 10.1111/xen.12091.
    [17]
    Bottino R, Wijkstrom M, van der Windt DJ, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs[J]. Am J Transplant, 2014, 14(10):2275-2287. DOI: 10.1111/ajt.12868.
    [18]
    Hawthorne WJ, Salvaris EJ, Phillips P, et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons[J]. Am J Transplant, 2014, 14(6):1300-1309. DOI: 10.1111/ajt.12722.
    [19]
    Yang Y, Wang K, Wu H, et al. Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering[J]. J Mol Cell Biol, 2016, 8(2):174-177. DOI: 10.1093/jmcb/mjw008.
    [20]
    Zhu HT, Yu L, Lyu Y, et al. Optimal pig donor selection in islet xenotransplantation: current status and future perspectives[J]. J Zhejiang Univ Sci B, 2014, 15(8):681-691. DOI: 10.1631/jzus.B1400120.
    [21]
    Nagaraju S, Bottino R, Wijkstrom M, et al. Islet xenotransplantation: what is the optimal age of the islet-source pig?[J]. Xenotransplantation, 2015, 22(1):7-19. DOI: 10.1111/xen.12130.
    [22]
    Wijkstrom M, Bottino R, Iwase H, et al. Glucose metabolism in pigs expressing human genes under an insulin promoter[J]. Xenotransplantation, 2015, 22(1):70-79. DOI: 10.1111/xen.12145.
    [23]
    Wynyard S, Nathu D, Garkavenko O, et al. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand[J]. Xenotransplantation, 2014, 21(4):309-323. DOI: 10.1111/xen.12102.
    [24]
    Yang L, Guell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264):1101-1104. DOI: 10.1126/science.aad1191.
    [25]
    Morozov VA, Wynyard S, Matsumoto S, et al. No PERV transmission during a clinical trial of pig islet cell transplantation[J]. Virus Res, 2017, 227:34-40. DOI: 10.1016/j.virusres.2016.08.012.
    [26]
    Cozzi E, Tönjes RR, Gianello P, et al. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes --Chapter 1: update on national regulatory frameworks pertinent to clinical islet xenotransplantation[J]. Xenotransplantation, 2016, 23(1):14-24. DOI: 10.1111/xen.12222.
    [27]
    Marchetti P. Islet inflammation in type 2 diabetes[J]. Diabetologia, 2016, 59(4):668-672. DOI: 10.1007/s00125-016-3875-x.
    [28]
    Morgan NG, Leete P, Foulis AK, et al. Islet inflammation in human type 1 diabetes mellitus[J]. IUBMB Life, 2014, 66(11):723-734. DOI: 10.1002/iub.1330.
    [29]
    Kang HJ, Lee H, Park EM, et al. Dissociation between anti-porcine albumin and anti-Gal antibody responses in non-human primate recipients of intraportal porcine islet transplantation[J]. Xenotransplantation, 2015, 22(2):124-134. DOI: 10.1111/xen.12152.
    [30]
    Lowe M, Badell IR, Thompson P, et al. A novel monoclonal antibody to CD40 prolongs islet allograft survival[J]. Am J Transplant, 2012, 12(8):2079-2087. DOI: 10.1111/j.1600-6143.2012.04054.x.
    [31]
    Mohiuddin MM, Singh AK, Corcoran PC, et al. One-year heterotopic cardiac xenograft survival in a pig to baboon model[J]. Am J Transplant, 2014, 14(2):488-489. DOI: 10.1111/ajt.12562.
    [32]
    Iwase H, Ekser B, Satyananda V, et al. Pig-to-baboon heterotopic heart transplantation--exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens[J]. Xenotransplantation, 2015, 22(3):211-220. DOI: 10.1111/xen.12167.
    [33]
    Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7:11138. DOI: 10.1038/ncomms11138.
    [34]
    Gianello P. Macroencapsulated pig islets correct induced diabetes in primates up to 6 months[J]. Adv Exp Med Biol, 2015, 865:157-170. DOI: 10.1007/978-3-319-18603-0_10.
    [35]
    Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution[J]. Adv Drug Deliv Rev, 2014, 67-68:35-73. DOI: 10.1016/j.addr.2013.07.018.
    [36]
    Cooper DK, Matsumoto S, Abalovich A, et al. Progress in clinical encapsulated islet xenotransplantation[J]. Transplantation, 2016, 100(11):2301-2308. DOI: 10.1097/TP.0000000000001371.
    [37]
    Li J, Ezzelarab MB, Ayares D, et al. The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation[J]. Stem Cell Rev, 2014, 10(1):79-85. DOI: 10.1007/s12015-013-9478-8.
    [38]
    Vériter S, Gianello P, Igarashi Y, et al. Improvement of subcutaneous bioartificial pancreas vascularization and function by coencapsulation of pig islets and mesenchymal stem cells in primates[J]. Cell Transplant, 2014, 23(11):1349-1364. DOI: 10.3727/096368913X663550.
    [39]
    Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2):288-299. DOI: 10.1002/path.4635.
    [40]
    Klymiuk N, van Buerck L, Bähr A, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice[J]. Diabetes, 2012, 61(6):1527-1532. DOI: 10.2337/db11-1325.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (196) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return