Volume 8 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Wu Ao, Wang Shuiliang, Zhu Ling, et al. Differential gene expression profile of miRNAs in mouse models with renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2017, 8(2): 138-143. doi: 10.3969/j.issn.1674-7445.2017.02.009
Citation: Wu Ao, Wang Shuiliang, Zhu Ling, et al. Differential gene expression profile of miRNAs in mouse models with renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2017, 8(2): 138-143. doi: 10.3969/j.issn.1674-7445.2017.02.009

Differential gene expression profile of miRNAs in mouse models with renal ischemia-reperfusion injury

doi: 10.3969/j.issn.1674-7445.2017.02.009
More Information
  • Corresponding author: Yang Shunliang, Email:ysliang@medmail.com.cn
  • Received Date: 2016-12-18
    Available Online: 2021-01-19
  • Publish Date: 2017-03-15
  •   Objective  To screen the differentially-expressed microRNAs (miRNAs) in mouse models with renal ischemia-reperfusion injury (IRI), aiming to offer foundation for unraveling the molecular mechanism of the incidence and progression of IRI.  Methods  The mouse models with acute IRI were established by renal artery clamping. Fifteen mice were divided into the IRI group and sham surgery group (group E). The animals in the IRI group were subdivided into the A group (45 min ischemia followed by 24 h reperfusion), B group (25 min ischemia followed by 24 h reperfusion), C group (45 min ischemia followed by 4 h reperfusion) and D group (25 min ischemia followed by 4 h reperfusion) (n=3 for each group). The severity of IRI was evaluated by histological changes and renal function. The differentially-expressed miRNAs in the IRI mouse models at different ischemia time (25 and 45 min) and reperfusion time (4 and 24 h) were screened by using cluster analysis of miRNAs microarray data. The differential expression of miR-695 and miR-145 was validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR).  Results  Both histological changes and renal function confirmed that the IRI mouse models were successfully established. Compared with the sham surgery group, 71 differentially-expressed miRNAs were detected in the IRI group including 30 down-regulated miRNAs and 40 up-regulated miRNAs. The results of qRT-PCR demonstrated that if the standardized expression level of miRNAs in the E group was 1, the relative expression levels of miR-695 and miR-145 were 11.82 and 0.31 in the IRI group (both P < 0.05), which were consistent with the chip results.  Conclusions  After renal IRI, different changes occur in the gene expression profile of miRNAs. These differentially-expressed miRNAs act as molecular biomarkers for renal IRI with potential clinical and scientific research values.

     

  • loading
  • [1]
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9):597-610. DOI: 10.1038/nrg2843.
    [2]
    Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease[J]. Cell, 2012, 148(6):1172-1187. DOI: 10.1016/j.cell.2012.02.005.
    [3]
    Bellini MH, Coutinho EL, Filgueiras TC, et al. Endostatin expression in the murine model of ischaemia/reperfusion-induced acute renal failure[J]. Nephrology (Carlton), 2007, 12(5):459-465. DOI: 10.1111/j.1440-1797.2007.00850.x.
    [4]
    Lawrie CH, Gal S, Dunlop HM, et al.Detection of elevated levels of tumor-associated microRNAs in serum of patients with diffuse large B-cell lymphoma[J].Br J Haematol, 2008, 141(5):672-675.DOI: 10.1111/j.1365-2141.2008.07077.x.
    [5]
    Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105(30):10513-10518. DOI: 10.1073/pnas.0804549105.
    [6]
    Cortez MA, Bueso-Ramos C, Ferdin J, et al. MicroRNAs in body fluids-the mix of hormones and biomarkers[J]. Nat Rev Clin Oncol, 2011, 8(8):467-477. DOI: 10.1038/nrclinonc.2011.76.
    [7]
    Wang JF, Zha YF, Li HW, et al. Screening plasma miRNAs as biomakers for renal ischemia-reperfusion injury in rats[J].Med Sci Monit, 2014, 20:283-289. DOI: 10.12659/MSM.889937.
    [8]
    Wang N, Zhou Y, Jiang L, et al. Urinary MicroRNA-10a and MicroRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury[J]. PLoS One, 2012, 5(12):e51140. DOI: 10.1371/journal.pone.0051140.
    [9]
    王博, 徐达, 王锡智, 等.青藤碱减轻小鼠肾脏缺血再灌注损伤[J].中华器官移植杂志, 2011, 32(2):73-77. DOI: 10.3760/cma.j.issn.0254-1785.2011.02.002.

    Wang B, Xu D, Wang XZ, et al. Protective effects of sinomenine on renal ischemia/reperfusion injury in mice[J]. Chin J Organ Transplant, 2011, 32(2):73-77.DOI: 10.3760/cma.j.issn.0254-1785.2011.02.002.
    [10]
    赵海红, 乔晞, 李荣山, 等.肾上腺髓质素对大鼠肾缺血再灌注损伤中肾小管上皮细胞凋亡的影响及机制研究[J].中华泌尿外科杂志, 2011, 7(32):449-453. DOI: 10.3760/cma.j.issn.1000-6702.2011.07.005.

    Zhao HH, Qiao X, Li RS, et al. Effect and mechanism of adrenomedullin on apoptosis of renal tubular epithelial cell in rats induced by renal ischemia reperfusion injury[J]. Chin J Urol, 2011, 7(32):449-453. DOI: 10.3760/cma.j.issn.1000-6702.2011.07.005.
    [11]
    Liangos O, Tiouart H, Perianayagam MC, et al. Comparative analysis of urinary biomakers for early detection of acute kidney injury following cardiopulmonary bypass[J].Biomakers, 2009, 14(6):423-431. DOI: 10.1080/13547500903067744.
    [12]
    Godwin JG, Ge X, Stephan K, et al. Identification of a microRNA signature of renal ischemia reperfusion injury[J]. Proc Natl Acad Sci U S A, 2010, 107(32):14339-14344. DOI: 10.1073/pnas.0912701107.
    [13]
    Park KM, Kramers C, Vayssier-Taussat M, et al. Prevention of kidney ischemia/reperfusion induced functional injury, MAPK and MAPK kinase activation, and inflammation by remote transient ureteral obstruction[J]. J Biol Chem, 2002, 277(3):2040-2049. DOI: 10.1074/jbc.M107525200.
    [14]
    查宜凤, 王嘉锋, 李和文, 等.缺血再灌注损伤大鼠肾脏miRNA表达谱的筛查与分析[J].第二军医大学学报, 2014, 35(5):465-470. DOI: 10.3724/SP.J.1008.2014.00465.

    Zha YF, Wang JF, Li HW, et al. miRNA expression profile in rat kidney during renal ischemia/reperfusion injury: screening and analysis[J]. Acad J Sec Milit Med Univ, 2014, 35(5):465-470. DOI: 10.3724/SP.J.1008.2014.00465.
    [15]
    王春阳, 叶冬波, 倪少滨, 等.缺血后处理对大鼠肾脏miRNAs表达谱的影响[J].现代生物医学进展, 2015, 15(28):5408-5413. DOI: 10.13241/j.cnki.pmb.2015.28.003.

    Wang CY, Ye DB, Ni SB, et al. Expression profiling of miRNAs in rat renal ischemic post-conditioning[J]. Prog Mod Biomed, 2015, 15(28):5408-5413. DOI: 10.13241/j.cnki.pmb.2015.28.003.
    [16]
    Jeyaseelan K, Lim KY, Armugam A. Micro RNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3):959-966. DOI: 10.1161/STROKEAHA.107.500736.
    [17]
    郑平, 曾志涌. MicroRNA-134在缺氧预处理新生大鼠缺氧缺血脑组织中的表达及意义[J].广州医学院学报, 2011, 39(2):201-205. DOI: 10.3969/j.issn.1008-1836.2011.02.005.

    Zheng P, Zeng ZY. Expression of microRNA-134 in brain tissue of hypoxia-preconditioned neonatal rat hypoxic-ischemic models[J]. Acad J Guangzhou Med Col, 2011, 39(2):201-205. DOI: 10.3969/j.issn.1008-1836.2011.02.005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (299) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return