Volume 6 Issue 2
Mar.  2015
Turn off MathJax
Article Contents
Liu Jing, Li Li, Ran Jianghua, et al. Research on differential expression of hepatic stress protein after reduced-size liver transplantation in rats[J]. ORGAN TRANSPLANTATION, 2015, 6(2): 116-119. doi: 10.3969/j.issn.1674-7445.2015.02.010
Citation: Liu Jing, Li Li, Ran Jianghua, et al. Research on differential expression of hepatic stress protein after reduced-size liver transplantation in rats[J]. ORGAN TRANSPLANTATION, 2015, 6(2): 116-119. doi: 10.3969/j.issn.1674-7445.2015.02.010

Research on differential expression of hepatic stress protein after reduced-size liver transplantation in rats

doi: 10.3969/j.issn.1674-7445.2015.02.010
More Information
  • Corresponding author: Li Li, E-mail:ynkmlili@yahoo.com.cn
  • Received Date: 2015-01-11
  • Publish Date: 2015-03-01
  •   Objective  To discuss the differential expression of hepatic stress proteins after reduced-size liver transplantation in rats.  Methods  The specimens of liver tissues were procured on 1 d, 3 d and 7 d after the improved model of reduced-size liver transplantation in rats. Then, the two-dimensional electrophoresis of these specimens was compared with that of the original liver tissues of normal donors and recipients. The differentially expressed protein spots were selected with the standard of change times greater than 10 or less than 1/10 and then were analyzed and identified by mass-spectrometric technique and data bases.  Results  Seventy-two differentially expressed protein spots were found in total. And the 32 kinds of proteins were identified with definite function through mass spectrometry and a series of identifications. The expression difference of heat shock protein-8 and hypertrophy agonist reactive protein was larger, amounting 7% (5/72) of all differential proteins.  Conclusions  This study provides fundamental research data for studying the relation between liver ischemia-reperfusion injury after liver transplant and the above differential proteins of stress reaction in transplant liver which are found after reduced-size liver transplantation in rats.

     

  • loading
  • [1]
    Brewis IA, Brennan P. Proteomics technologies for the global identification and quantification of proteins[J]. Adv Protein Chem Struct Biol, 2010, 80:1-44. doi: 10.1016/B978-0-12-381264-3.00001-1
    [2]
    Müller SA, Findeiβ S, Pernitzsch SR, et al. Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain26695 by proteogenomics[J]. J Proteomics, 2013, 86:27-42. doi: 10.1016/j.jprot.2013.04.036
    [3]
    Armengaud J, Hartmann EM, Bland C. Proteogenomics for environmental microbiology[J]. Proteomics, 2013, 13(18/19):2731-2742. http://www.ncbi.nlm.nih.gov/pubmed/23636904
    [4]
    Armengaud J, Trapp J, Pible O, et al. Non-model organisms, a species endangered by proteogenomics[J]. J Proteomics, 2014, 105:5-18. doi: 10.1016/j.jprot.2014.01.007
    [5]
    Sun H, Chen C, Shi M, et al. Integration of mass spectrometry and RNA-Seq data to confirm human ab initio predicted genes and lncRNAs[J]. Proteomics, 2014, 14(23/24):2760-2768. https://www.researchgate.net/profile/Lu_Xie4/publication/267275973_Integration_of_mass_spectrometry_and_RNA-Seq_data_to_confirm_human_ab_initio_predicted_genes_and_lncRNAs/links/54c6edd10cf22d626a35e77f.pdf?origin=publication_detail
    [6]
    Gustafsson OJ, Arentz G, Hoffmann P. Proteomic developments in the analysis of formalin-fixed tissue[J]. Biochim Biophys Acta, 2014, DOI: 10.1016/j.bbapap.2014.10.003[Epub ahead of print].
    [7]
    Vincenti DC, Murray GI. The proteomics of formalin-fixed wax-embedded tissue[J]. Clin Biochem, 2013, 46(6):546-551. doi: 10.1016/j.clinbiochem.2012.10.002
    [8]
    Kim SC, Page EK, Knechtle SJ. Urine proteomics in kidney transplantation[J]. Transplant Rev, 2014, 28(1):15-20. doi: 10.1016/j.trre.2013.10.004
    [9]
    Sigdel TK, Salomonis N, Nicora CD, et al. The identification of novel potential injury mechanisms and candidate biomarkers in renal allograft rejection by quantitative proteomics[J]. Mol Cell Proteomics, 2014, 13(2):621-631. doi: 10.1074/mcp.M113.030577
    [10]
    Kornasiewicz O, Bojarczuk K, Bugajski M, et al. Application of a proteomic approach to identify proteins associated with primary graft non-function after liver transplantation[J]. Int J Mol Med, 2012, 30(4):755-764. https://www.spandidos-publications.com/ijmm/30/4/755/abstract
    [11]
    刘静, 李江, 张升宁, 等.改良法构建大鼠减体积肝移植模型的建立[J].中国组织工程研究与临床康复杂志, 2010, 14(18):3252-3257. http://mall.cnki.net/magazine/article/xdkf201018012.htm

    Liu J, Li J, Zhang SN, et al. Modified model of reduced-size liver transplantation in rats[J]. J Clin Rehabil Tissue Eng Res, 2010, 14(18):3252-3257. http://mall.cnki.net/magazine/article/xdkf201018012.htm
    [12]
    Amacher DE. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity[J]. Toxicol Appl Pharmacol, 2010, 245(1):134-142. doi: 10.1016/j.taap.2010.02.011
    [13]
    Franchin C, Cesaro L, Pinna LA, et al. Identification of the PLK2-dependent phosphopeptidome by quantitative proteomics[J]. PLoS One, 2014, 9(10):e111018. doi: 10.1371/journal.pone.0111018
    [14]
    Kesharwani SS, Nandekar PP, Pragyan P, et al. Comparative proteomics among cytochrome p450 family 1 for differential substrate specificity[J]. Protein J, 2014, 33(6):536-548. doi: 10.1007/s10930-014-9586-6
    [15]
    Wei J, Zhang F, Zhang Y, et al. Proteomic investigation of signatures for geniposide-induced hepatotoxicity[J]. J Proteome Res, 2014, 13(12):5724-5733. doi: 10.1021/pr5007119
    [16]
    Bassols A, Costa C, Eckersall PD, et al. The pig as an animal model for human pathologies:a proteomics perspective[J]. Proteomics Clin Appl, 2014, 8(9/10):715-731. https://www.researchgate.net/publication/264500034_The_pig_as_an_animal_model_for_human_pathologies_A_proteomics_perspective
    [17]
    Bohra R, Klepacki J, Klawitter J, et al. Proteomics and metabolomics in renal transplantation-quo vadis?[J]. Transpl Int, 2013, 26(3):225-241. doi: 10.1111/tri.2013.26.issue-3
    [18]
    Akbarian A, Michiels J, Golian A, et al. Gene expression of heat shock protein 70 and antioxidant enzymes, oxidative status, and meat oxidative stability of cyclically heat-challenged finishing broilers fed Origanum compactum and Curcuma xanthorrhiza essential oils[J]. Poult Sci, 2014, 93(8):1930-1941. doi: 10.3382/ps.2014-03896
    [19]
    Yamamoto TM, Wang L, Fisher LA, et al. Regulation of Greatwall kinase by protein stabilization and nuclear localization[J].Cell Cycle, 2014, 13(22):3565-3575. doi: 10.4161/15384101.2014.962942
    [20]
    Leung AM, Redlak MJ, Miller TA. Role of heat shock proteins in oxygen radical-induced gastric apoptosis[J].J Surg Res, 2014, DOI:10.1016/j.jss. 2014.07.013[Epub ahead of print].
    [21]
    Zhu J, Zhou Y, Wang GN, et al. Cell cycle arrest, apoptosis and autophagy induced by iminosugars on K562 cells[J]. Eur J Pharmacol, 2014, 731:65-72. doi: 10.1016/j.ejphar.2014.03.013
    [22]
    Wang R, Shao F, Liu Z, et al. The Hsp90 inhibitor SNX-2112, induces apoptosis in multidrug resistant K562/ADR cells through suppression of Akt/NF-κB and disruption of mitochondria-dependent pathways[J]. Chem Biol Interact, 2013, 205(1):1-10. doi: 10.1016/j.cbi.2013.06.007
    [23]
    Steel R, Cross RS, Ellis SL, et al. Hsp70 architecture:the formation of novel polymeric structures of Hsp70.1 and Hsc70 after proteotoxic stress[J]. PLoS One, 2012, 7(12):e52351. doi: 10.1371/journal.pone.0052351
    [24]
    Kim JY, Yenari MA, Lee JE. Regulation of inflammatory transcription factors by heat shock protein 70 in primary cultured astrocytes exposed to oxygen-glucose deprivation[J]. Neuroscience, 2014, DOI: 10.1016/j.neuroscience.2014.11.057[Epub ahead of print].
    [25]
    Silva PN, Furuya TK, Braga IL, et al. Analysis of HSPA8 and HSPA9 mRNA expression and promoter methylation in the brain and blood of Alzheimer's disease patients[J]. J Alzheimers Dis, 2014, 38(1):165-170. https://www.ncbi.nlm.nih.gov/pubmed/23948933/
    [26]
    Boswell-Casteel RC, Johnson JM, Duggan KD, et al. Overproduction and biophysical characterization of human HSP70 proteins[J]. Protein Expr Purif, 2014, DOI: 10.1016/j.pep.2014.09.013[Epub ahead of print].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (70) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return