留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

管周毛细血管损伤在肾移植中作用的研究进展

梁诚, 牛纪平, 满江位, 等. 管周毛细血管损伤在肾移植中作用的研究进展[J]. 器官移植, 2023, 14(1): 147-153. doi: 10.3969/j.issn.1674-7445.2023.01.020
引用本文: 梁诚, 牛纪平, 满江位, 等. 管周毛细血管损伤在肾移植中作用的研究进展[J]. 器官移植, 2023, 14(1): 147-153. doi: 10.3969/j.issn.1674-7445.2023.01.020
Liang Cheng, Niu Jiping, Man Jiangwei, et al. Progress in the role of peritubular capillary injury in kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(1): 147-153. doi: 10.3969/j.issn.1674-7445.2023.01.020
Citation: Liang Cheng, Niu Jiping, Man Jiangwei, et al. Progress in the role of peritubular capillary injury in kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(1): 147-153. doi: 10.3969/j.issn.1674-7445.2023.01.020

管周毛细血管损伤在肾移植中作用的研究进展

doi: 10.3969/j.issn.1674-7445.2023.01.020
基金项目: 

甘肃省青年科技基金 21JR7RA428

兰州大学第二医院“萃英科技创新”计划项目 CY2021-QN-B15

详细信息
    作者简介:
    通讯作者:

    杨立,博士,主任医师,研究方向为肾移植与再灌注损伤,Email: ery_yangli@lzu.edu.cn

  • 中图分类号: R617, R322.6+1

Progress in the role of peritubular capillary injury in kidney transplantation

More Information
  • 摘要: 肾脏是一个高度血管化的器官,管周毛细血管网络是其微血管系统中关键组成部分。管周毛细血管作为肾小管及肾间质的主要供应血管,参与肾小管的能量代谢、物质分泌和重吸收等重要生理过程。近年来研究发现,肾移植过程中的缺血-再灌注损伤、排斥反应以及肾脏纤维化过程均会引起管周毛细血管结构完整性破坏、数量减少,并加重移植肾间质纤维化,严重影响肾功能的长期稳定。因此,本文对管周毛细血管的结构与功能,管周毛细血管与缺血-再灌注损伤、排斥反应以及移植肾纤维化进行综述,聚焦肾移植期间管周毛细血管的损伤机制和特异性改变,为防治肾移植围手术期并发症,改善移植物的长期预后提供参考。

     

  • [1] DOREILLE A, AZZI F, LARIVIÈRE-BEAUDOIN S, et al. Acute kidney injury, microvascular rarefaction, and estimated glomerular filtration rate in kidney transplant recipients[J]. Clin J Am Soc Nephrol, 2021, 16(3): 415-426. DOI: 10.2215/CJN.07270520.
    [2] JOURDE-CHICHE N, FAKHOURI F, DOU L, et al. Endothelium structure and function in kidney health and disease[J]. Nat Rev Nephrol, 2019, 15(2): 87-108. DOI: 10.1038/s41581-018-0098-z.
    [3] DOREILLE A, DIEUDÉ M, CARDINAL H. The determinants, biomarkers, and consequences of microvascular injury in kidney transplant recipients[J]. Am J Physiol Renal Physiol, 2019, 316(1): F9-F19. DOI: 10.1152/ajprenal.00163.2018.
    [4] GUVEN G, HILTY MP, INCE C. Microcirculation: physiology, pathophysiology, and clinical application[J]. Blood Purif, 2020, 49(1/2): 143-150. DOI: 10.1159/000503775.
    [5] LIGRESTI G, NAGAO RJ, XUE J, et al. A novel three-dimensional human peritubular microvascular system[J]. J Am Soc Nephrol, 2016, 27(8): 2370-2381. DOI: 10.1681/ASN.2015070747.
    [6] HERRNBERGER L, SEITZ R, KUESPERT S, et al. Lack of endothelial diaphragms in fenestrae and caveolae of mutant PLVAP-deficient mice[J]. Histochem Cell Biol, 2012, 138(5): 709-724. DOI: 10.1007/s00418-012-0987-3.
    [7] DOGNÉ S, FLAMION B. Endothelial glycocalyx impairment in disease: focus on hyaluronan shedding[J]. Am J Pathol, 2020, 190(4): 768-780. DOI: 10.1016/j.ajpath.2019.11.016.
    [8] LEMOS DR, MARSH G, HUANG A, et al. Maintenance of vascular integrity by pericytes is essential for normal kidney function[J]. Am J Physiol Renal Physiol, 2016, 311(6): F1230-F1242. DOI: 10.1152/ajprenal.00030.2016.
    [9] KIDA Y. Peritubular capillary rarefaction: an underappreciated regulator of CKD progression[J]. Int J Mol Sci, 2020, 21(21): 8255. DOI: 10.3390/ijms21218255.
    [10] BARTOSCH AMW, MATHEWS R, TARBELL JM. Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling[J]. Biophys J, 2017, 113(1): 101-108. DOI: 10.1016/j.bpj.2017.05.033.
    [11] MA Y, YANG X, CHATTERJEE V, et al. Role of neutrophil extracellular traps and vesicles in regulating vascular endothelial permeability[J]. Front Immunol, 2019, 10: 1037. DOI: 10.3389/fimmu.2019.01037.
    [12] MATHIS S, PUTZER G, SCHNEEBERGER S, et al. The endothelial glycocalyx and organ preservation-from physiology to possible clinical implications for solid organ transplantation[J]. Int J Mol Sci, 2021, 22(8): 4019. DOI: 10.3390/ijms22084019.
    [13] QUAGLIA M, DELLEPIANE S, GUGLIELMETTI G, et al. Extracellular vesicles as mediators of cellular crosstalk between immune system and kidney graft[J]. Front Immunol, 2020, 11: 74. DOI: 10.3389/fimmu.2020.00074.
    [14] VIÑAS JL, BURGER D, ZIMPELMANN J, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury[J]. Kidney Int, 2016, 90(6): 1238-1250. DOI: 10.1016/j.kint.2016.07.015.
    [15] LAN S, YANG B, MIGNEAULT F, et al. Caspase-3-dependent peritubular capillary dysfunction is pivotal for the transition from acute to chronic kidney disease after acute ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2021, 321(3): F335-F351. DOI: 10.1152/ajprenal.00690.2020.
    [16] DUNI A, LIAKOPOULOS V, KOUTLAS V, et al. The endothelial glycocalyx as a target of ischemia and reperfusion injury in kidney transplantation-where have we gone so far?[J]. Int J Mol Sci, 2021, 22(4): 2157. DOI: 10.3390/ijms22042157.
    [17] MARUYAMA Y, ARAKI M, KIDOKORO K, et al. Evaluation of neutrophil dynamics change by protective effect of tadalafil after renal ischemia/reperfusion using in vivo real-time imaging[J]. Transplantation, 2022, 106(2): 280-288. DOI: 10.1097/TP.0000000000003803.
    [18] 邹志锐, 满江位, 杨立. DAMP与NET在器官缺血-再灌注损伤中作用新进展[J]. 器官移植, 2021, 12(6): 761-766. DOI: 10.3969/j.issn.1674-7445.2021.06.018.

    ZOU ZR, MAN JW, YANG L. Recent progress on the roles of DAMP and NET in organ ischemia-reperfusion injury[J]. Organ Transplant, 2021, 12(6): 761-766. DOI: 10.3969/j.issn.1674-7445.2021.06.018.
    [19] CHEN X, YU C, JING H, et al. COVID-19 associated thromboinflammation of renal capillary: potential mechanisms and treatment[J]. Am J Transl Res, 2020, 12(12): 7640-7656.
    [20] 郭晖. 移植肾T细胞介导的排斥反应的病理学[J]. 器官移植, 2021, 12(2): 134-142. DOI: 10.3969/j.issn.1674-7445.2021.02.003.

    GUO H. Pathology of T cell-mediated rejection in renal allograft[J]. Organ Transplant, 2021, 12(2): 134-142. DOI: 10.3969/j.issn.1674-7445.2021.02.003.
    [21] HUGHES AD, LAKKIS FG, OBERBARNSCHEIDT MH. Four-dimensional imaging of T cells in kidney transplant rejection[J]. J Am Soc Nephrol, 2018, 29(6): 1596-1600. DOI: 10.1681/ASN.2017070800.
    [22] YAZDANI S, CALLEMEYN J, GAZUT S, et al. Natural killer cell infiltration is discriminative for antibody-mediated rejection and predicts outcome after kidney transplantation[J]. Kidney Int, 2019, 95(1): 188-198. DOI: 10.1016/j.kint.2018.08.027.
    [23] CALVANI J, TERADA M, LESAFFRE C, et al. In situ multiplex immunofluorescence analysis of the inflammatory burden in kidney allograft rejection: a new tool to characterize the alloimmune response[J]. Am J Transplant, 2020, 20(4): 942-953. DOI: 10.1111/ajt.15699.
    [24] DE SOUSA MV, GONÇALEZ AC, DE LIMA ZOLLNER R, et al. Treatment of antibody-mediated rejection after kidney transplantation: immunological effects, clinical response, and histological findings[J]. Ann Transplant, 2020, 25: e925488. DOI: 10.12659/AOT.925488.
    [25] LV R, ZHANG W, HAN F, et al. Capillary deposition of complement C4d and C3d in Chinese renal allograft biopsies[J]. Dis Markers, 2015: 397613. DOI: 10.1155/2015/397613.
    [26] ZHANG R. Donor-specific antibodies in kidney transplant recipients[J]. Clin J Am Soc Nephrol, 2018, 13(1): 182-192. DOI: 10.2215/CJN.00700117.
    [27] ZHANG X, REED EF. Effect of antibodies on endothelium[J]. Am J Transplant, 2009, 9(11): 2459-2465. DOI: 10.1111/j.1600-6143.2009.02819.x.
    [28] LI X, SUN Q, ZHANG M, et al. Capillary dilation and rarefaction are correlated with intracapillary inflammation in antibody-mediated rejection[J]. J Immunol Res, 2014: 582902. DOI: 10.1155/2014/582902.
    [29] XU-DUBOIS YC, PELTIER J, BROCHERIOU I, et al. Markers of endothelial-to-mesenchymal transition: evidence for antibody-endothelium interaction during antibody-mediated rejection in kidney recipients[J]. J Am Soc Nephrol, 2016, 27(1): 324-332. DOI: 10.1681/ASN.2014070679.
    [30] LOUIS K, HERTIG A, TAUPIN JL, et al. Markers of graft microvascular endothelial injury may identify harmful donor-specific anti-HLA antibodies and predict kidney allograft loss[J]. Am J Transplant, 2019, 19(9): 2434-2445. DOI: 10.1111/ajt.15340.
    [31] GWON MG, AN HJ, KIM JY, et al. Anti-fibrotic effects of synthetic TGF-β1 and Smad oligodeoxynucleotide on kidney fibrosis in vivo and in vitro through inhibition of both epithelial dedifferentiation and endothelial-mesenchymal transitions[J]. FASEB J, 2020, 34(1): 333-349. DOI: 10.1096/fj.201901307RR.
    [32] WANG M, XU H, LI Y, et al. Exogenous bone marrow derived-putative endothelial progenitor cells attenuate ischemia reperfusion-induced vascular injury and renal fibrosis in mice dependent on pericytes[J]. Theranostics, 2020, 10(26): 12144-12157. DOI: 10.7150/thno.48562.
    [33] CHEN YT, CHANG FC, WU CF, et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis[J]. Kidney Int, 2011, 80(11): 1170-1181. DOI: 10.1038/ki.2011.208.
    [34] HU W, LI Z, LI H, et al. Bone marrow-derived mesenchymal stem cells transplantation attenuates renal fibrosis following acute kidney injury by repairing the peritubular capillaries[J]. Exp Cell Res, 2022, 411(1): 112983. DOI: 10.1016/j.yexcr.2021.112983.
    [35] LOVISA S, FLETCHER-SANANIKONE E, SUGIMOTO H, et al. Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis[J]. Sci Signal, 2020, 13(635): eaaz2597. DOI: 10.1126/scisignal.aaz2597.
    [36] MARTÍNEZ-SALGADO C, SÁNCHEZ-JUANES F, LÓPEZ-HERNÁNDEZ FJ, et al. Endothelial activin receptor-like kinase 1 (ALK1) regulates myofibroblast emergence and peritubular capillary stability in the early stages of kidney fibrosis[J]. Front Pharmacol, 2022, 13: 843732. DOI: 10.3389/fphar.2022.843732.
    [37] LEBLEU VS, TADURI G, O'CONNELL J, et al. Origin and function of myofibroblasts in kidney fibrosis[J]. Nat Med, 2013, 19(8): 1047-1053. DOI: 10.1038/nm.3218.
    [38] BÁBÍČKOVÁ J, KLINKHAMMER BM, BUHL EM, et al. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries[J]. Kidney Int, 2017, 91(1): 70-85. DOI: 10.1016/j.kint.2016.07.038.
    [39] HOHENSTEIN B, HUGO C. Peritubular capillaries: an important piece of the puzzle[J]. Kidney Int, 2017, 91(1): 9-11. DOI: 10.1016/j.kint.2016.08.033.
    [40] WANG Y, ZUO B, WANG N, et al. Calcium dobesilate mediates renal interstitial fibrosis and delay renal peritubular capillary loss through Sirt1/p53 signaling pathway[J]. Biomed Pharmacother, 2020, 132: 110798. DOI: 10.1016/j.biopha.2020.110798.
    [41] 王雅楠, 徐涛, 王万鹏, 等. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. DOI: 10.16288/j.yczz.21-170.

    WANG YN, XU T, WANG WP, et al. Role of epigenetic modifications in the development of crops essential traits[J]. Hereditas, 2021, 43(9): 858-879. DOI: 10.16288/j.yczz.21-170.
    [42] 荐思婧, 宁超, 高磊, 等. 表观遗传信息在动物中的跨代遗传和重编程[J]. 中国科学(生命科学), 2021, 51(5): 556-566. DOI: 10.1360/SSV-2019-0229.

    JIAN SJ, NING C, GAO L, et al. The transgenerational inheritance and reprogramming of epigenetic information in animals[J]. Sci Sin Vitae, 2021, 51(5): 556-566. DOI: 10.1360/SSV-2019-0229.
    [43] ZHAO LY, SONG J, LIU Y, et al. Mapping the epigenetic modifications of DNA and RNA[J]. Protein Cell, 2020, 11(11): 792-808. DOI: 10.1007/s13238-020-00733-7.
    [44] GUO C, DONG G, LIANG X, et al. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications[J]. Nat Rev Nephrol, 2019, 15(4): 220-239. DOI: 10.1038/s41581-018-0103-6.
    [45] XIANG X, ZHU J, DONG G, et al. Epigenetic regulation in kidney transplantation[J]. Front Immunol, 2022, 13: 861498. DOI: 10.3389/fimmu.2022.861498.
  • 加载中
图(1)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  112
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 网络出版日期:  2023-01-17
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回