留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆盐在肝移植术后缺血性胆道病变中的作用及研究进展

刘汉林, 代鑫, 肖奕君, 等. 胆盐在肝移植术后缺血性胆道病变中的作用及研究进展[J]. 器官移植, 2022, 13(4): 537-542. doi: 10.3969/j.issn.1674-7445.2022.04.019
引用本文: 刘汉林, 代鑫, 肖奕君, 等. 胆盐在肝移植术后缺血性胆道病变中的作用及研究进展[J]. 器官移植, 2022, 13(4): 537-542. doi: 10.3969/j.issn.1674-7445.2022.04.019
Liu Hanlin, Dai Xin, Xiao Yijun, et al. Research progress on the role of bile salts in ischemic-type biliary lesion after liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 537-542. doi: 10.3969/j.issn.1674-7445.2022.04.019
Citation: Liu Hanlin, Dai Xin, Xiao Yijun, et al. Research progress on the role of bile salts in ischemic-type biliary lesion after liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 537-542. doi: 10.3969/j.issn.1674-7445.2022.04.019

胆盐在肝移植术后缺血性胆道病变中的作用及研究进展

doi: 10.3969/j.issn.1674-7445.2022.04.019
基金项目: 

四川省科技计划项目 2018RZ0135

四川省科技计划项目 2016JQ0023

详细信息
    作者简介:
    通讯作者:

    吴畏,男,博士,主任医师,研究方向为围术期重要脏器功能保护、缺氧缺血所致脏器损伤,Email:wuweizj@163.com

  • 中图分类号: R617, R575.7

Research progress on the role of bile salts in ischemic-type biliary lesion after liver transplantation

More Information
  • 摘要: 缺血性胆道病变(ITBL)是由于肝动脉供血不足所导致的胆道受损,是影响肝移植受者长期生存和生活质量的主要因素之一,其发病与冷、热缺血,急、慢性排斥反应,巨细胞病毒感染,胆汁作用等多种因素有关。ITBL的发生是一个多因素、多环节的复杂过程,其治疗手段匮乏,相当一部分患者需要再次肝移植。ITBL已成为阻碍肝移植疗效进一步提高的最主要因素之一,因此加强预防以及寻找更多有效的治疗途径显得尤为重要。近年来发现胆盐的毒性损伤在ITBL中起着中心环节的作用,胆汁成分的主动调节、胆汁酸相关受体表达的调控、胆汁酸相关信号通路的阻断或激活,可能在ITBL的预防和治疗中具备较大的潜力。本文综述了胆盐细胞毒性以及碳酸氢盐伞在肝移植术后ITBL发生、发展中的作用机制,旨在为未来ITBL的诊断和治疗提供参考。

     

  • 图  1  胆管细胞分泌胆汁碳酸氢盐的主要机制

    注:ATP为三磷酸腺苷;cAMP为环磷酸腺苷;CFTR为囊性纤维化跨膜电导调节因子;CHMR3为胆碱能M3受体;IP3为三磷酸肌醇;IP3R为三磷酸肌醇受体;PKA为蛋白激酶A;PKC为蛋白激酶C;ER为内质网;AE2为阴离子交换蛋白2。

    Figure  1.  The main mechanism of bile bicarbonate secretion by bile duct cells

    图  2  在AE2下调情况下sAC参与胆管细胞损伤的机制假说

    注:BAs为疏水性胆盐;JNK为c-JNK氨基末端激酶;MOMP为线粒体外膜通透化;cAMP为环磷酸腺苷;CFTR为囊性纤维化跨膜电导调节因子;Bax为B淋巴细胞瘤-2相关X蛋白。

    Figure  2.  Mechanistic hypothesis of the involvement of sAC in cholangiocyte injury in the context of AE2 downregulation

  • [1] 陈耿, 周毅, 冯凯. 移植物胆管病发病机制与防治策略的研究进展[J]. 中华普通外科杂志, 2019, 34(8): 736-738. DOI: 10.3670.cma.j.issn.1007-631X.2019.08.033.

    CHEN G, ZHOU Y, FENG K. Research progress on the pathogenesis and prevention strategies of graft cholangiopathies[J]. Chin J Gen Surg, 2019, 34(8): 736-738. DOI: 10.3670.cma.j.issn.1007-631X.2019.08.033.
    [2] CHERCHI V, VETRUGNO L, ZANINI V, et al. Association between indocyanine green clearance test and ischemic type biliary lesions within one year after orthotopic liver transplantation[J]. Gastroenterol Hepatol, 2021, 44(10): 687-695. DOI: 10.1016/j.gastrohep.2021.03.005.
    [3] LI J, GUO QJ, JIANG WT, et al. Complex liver retransplantation to treat graft loss due to long-term biliary tract complication after liver transplantation: a case report[J]. World J Clin Cases, 2020, 8(3): 568-576. DOI: 10.12998/wjcc.v8.i3.568.
    [4] CZIGANY Z, LURJE I, SCHMELZLE M, et al. Ischemia-reperfusion injury in marginal liver grafts and the role of hypothermic machine perfusion: molecular mechanisms and clinical implications[J]. J Clin Med, 2020, 9(3): 846. DOI: 10.3390/jcm9030846.
    [5] GEUKEN E, VISSER D, KUIPERS F, et al. Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation[J]. J Hepatol, 2004, 41(6): 1017-1025. DOI: 10.1016/j.jhep.2004.08.023.
    [6] YSKA MJ, BUIS CI, MONBALIU D, et al. The role of bile salt toxicity in the pathogenesis of bile duct injury after non-heart-beating porcine liver transplantation[J]. Transplantation, 2008, 85(11): 1625-1631. DOI: 10.1097/TP.0b013e318170f5f7.
    [7] CHEN G, WANG S, BIE P, et al. Endogenous bile salts are associated with bile duct injury in the rat liver transplantation model[J]. Transplantation, 2009, 87(3): 330-339. DOI: 10.1097/TP.0b013e3181954fee.
    [8] 李萌, 平键, 徐列明. Mdr2基因敲除小鼠在肝病研究中的应用[J]. 中华肝脏病杂志, 2021, 29(6): 585-590. DOI: 10.3760/cma.j.cn501113-20191007-00364.

    LI M, PING J, XU LM. Application of Mdr2 gene knockout mice in liver disease research[J]. Chin J Hepatol, 2021, 29(6): 585-590. DOI: 10.3760/cma.j.cn501113-20191007-00364.
    [9] WANG R, SHEPS JA, LIU L, et al. Hydrophilic bile acids prevent liver damage caused by lack of biliary phospholipid in Mdr2-/- mice[J]. J Lipid Res, 2019, 60(1): 85-97. DOI: 10.1194/jlr.M088070.
    [10] CHEN S, FANG H, LI J, et al. Donor brain death leads to a worse ischemia-reperfusion injury and biliary injury after liver transplantation in rats[J]. Transplant Proc, 2020, 52(1): 373-382. DOI: 10.1016/j.transproceed.2019.10.012.
    [11] HERTL M, HERTL MC, KUNKEL P, et al. Tauroursodeoxycholate ameliorates reperfusion injury after pig liver transplantation[J]. Transpl Int, 1999, 12(6): 454-462. DOI: 10.1007/s001470050257.
    [12] FALASCA L, TISONE G, PALMIERI G, et al. Protective role of tauroursodeoxycholate during harvesting and cold storage of human liver: a pilot study in transplant recipients[J]. Transplantation, 2001, 71(9): 1268-1276. DOI: 10.1097/00007890-200105150-00015.
    [13] HOEKSTRA H, TIAN Y, JOCHUM W, et al. Dearterialization of the liver causes intrahepatic cholestasis due to reduced bile transporter expression[J]. Transplantation, 2008, 85(8): 1159-1166. DOI: 10.1097/TP.0b013e31816b2465.
    [14] CHENG L, ZHAO L, LI D, et al. Role of cholangiocyte bile acid transporters in large bile duct injury after rat liver transplantation[J]. Transplantation, 2010, 90(2): 127-134. DOI: 10.1097/TP.0b013e3181e0deaf.
    [15] MORITA SY, IKEDA Y, TSUJI T, et al. Molecular mechanisms for protection of hepatocytes against bile salt cytotoxicity[J]. Chem Pharm Bull (Tokyo), 2019, 67(4): 333-340. DOI: 10.1248/cpb.c18-01029.
    [16] IKEDA Y. Mechanism of taurohyodeoxycholate-induced biliary phospholipid efflux -understanding the function of the ABCB4 enhancer for developing therapeutic agents against bile salt-induced liver injury[J]. Yakugaku Zasshi, 2020, 140(11): 1329-1334. DOI: 10.1248/yakushi.20-00156.
    [17] VAN NIEKERK J, KERSTEN R, BEUERS U. Role of bile acids and the biliary HCO3- umbrella in the pathogenesis of primary biliary cholangitis[J]. Clin Liver Dis, 2018, 22(3): 457-479. DOI: 10.1016/j.cld.2018.03.013.
    [18] PRIETO J, BANALES JM, MEDINA JF. Primary biliary cholangitis: pathogenic mechanisms[J]. Curr Opin Gastroenterol, 2021, 37(2): 91-98. DOI: 10.1097/MOG.0000000000000703.
    [19] ARENAS F, HERVÍAS I, SÁEZ E, et al. Promoter hypermethylation of the AE2/SLC4A2 gene in PBC[J]. JHEP Rep, 2019, 1(3): 145-153. DOI: 10.1016/j.jhepr.2019.05.006.
    [20] HOHENESTER S, MAILLETTE DE BUY WENNIGER L, JEFFERSON DM, et al. Biliary bicarbonate secretion constitutes a protective mechanism against bile acid-induced injury in man[J]. Dig Dis, 2011, 29(1): 62-65. DOI: 10.1159/000324687.
    [21] CHANG JC, GO S, VERHOEVEN AJ, et al. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1232-1239. DOI: 10.1016/j.bbadis.2017.09.022.
    [22] ROSSETTI T, JACKVONY S, BUCK J, et al. Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase[J]. Interface Focus, 2021, 11(2): 20200034. DOI: 10.1098/rsfs.2020.0034.
    [23] TEODORO JS, AMORIM JA, MACHADO IF, et al. The soluble adenylyl cyclase inhibitor LRE1 prevents hepatic ischemia/reperfusion damage through improvement of mitochondrial function[J]. Int J Mol Sci, 2020, 21(14): 4896. DOI: 10.3390/ijms21144896.
    [24] CHANG JC, GO S, GILGLIONI EH, et al. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD+ redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation[J]. Biochim Biophys Acta Bioenerg, 2021, 1862(4): 148367. DOI: 10.1016/j.bbabio.2020.148367.
    [25] ASLAM M, LADILOV Y. Regulation of mitochondrial homeostasis by sac-derived camp pool: basic and translational aspects[J]. Cells, 2021, 10(2): 473. DOI: 10.3390/cells10020473.
    [26] PUGA MOLINA LC, LUQUE GM, BALESTRINI PA, et al. Molecular basis of human sperm capacitation[J]. Front Cell Dev Biol, 2018, 6: 72. DOI: 10.3389/fcell.2018.00072.
    [27] VIÑA D, SEOANE N, VASQUEZ EC, et al. cAMP compartmentalization in cerebrovascular endothelial cells: new therapeutic opportunities in Alzheimer's disease[J]. Cells, 2021, 10(8): 1951. DOI: 10.3390/cells10081951.
    [28] SONG J, DU J, TAN X, et al. Dexmedetomidine protects the heart against ischemia reperfusion injury via regulation of the bradykinin receptors[J]. Eur J Pharmacol, 2021, 911: 174493. DOI: 10.1016/j.ejphar.2021.174493.
  • 加载中
图(3)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  125
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 网络出版日期:  2022-07-14
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回