留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大鼠肝下下腔静脉端端磁吻合技术探究

王新颖, 杨丽斐, 任璐, 等. 大鼠肝下下腔静脉端端磁吻合技术探究[J]. 器官移植, 2022, 13(4): 483-488. doi: 10.3969/j.issn.1674-7445.2022.04.011
引用本文: 王新颖, 杨丽斐, 任璐, 等. 大鼠肝下下腔静脉端端磁吻合技术探究[J]. 器官移植, 2022, 13(4): 483-488. doi: 10.3969/j.issn.1674-7445.2022.04.011
Wang Xinying, Yang Lifei, Ren Lu, et al. Study of end-to-end magnetic anastomosis technique of infrahepatic inferior vena cava in rats[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 483-488. doi: 10.3969/j.issn.1674-7445.2022.04.011
Citation: Wang Xinying, Yang Lifei, Ren Lu, et al. Study of end-to-end magnetic anastomosis technique of infrahepatic inferior vena cava in rats[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 483-488. doi: 10.3969/j.issn.1674-7445.2022.04.011

大鼠肝下下腔静脉端端磁吻合技术探究

doi: 10.3969/j.issn.1674-7445.2022.04.011
基金项目: 

陕西省重点研发计划高校联合项目-重点项目 2021GXLH-Z-047

陕西省自然科学基础研究计划资助项目 2020JQ-528

详细信息
    作者简介:
    通讯作者:

    卢强,男,1990年生,博士,住院医师,研究方向为磁外科技术基础研究及临床应用,Email:thesurgeon@163.com

  • 中图分类号: R617, R622+.4

Study of end-to-end magnetic anastomosis technique of infrahepatic inferior vena cava in rats

More Information
  • 摘要:   目的  研制一种适用于大鼠肝下下腔静脉的磁性吻合装置并验证其可行性及安全性。  方法  根据大鼠下腔静脉解剖特点,设计并加工了一种适用于大鼠肝下下腔静脉端端吻合的磁性装置,该装置分为内环和外环两个部分,内环为具有镀层的钕铁硼磁环,外环由聚醚醚酮经3D打印制成,其上均匀分布10个细孔,其中5个细孔用于加载细针,另外5个细孔在吻合时与对侧吻合环的细针相互嵌合。将外环上均匀加载细针后与内环粘接在一起组成磁性吻合环,将两侧血管断端穿过吻合环后外翻固定至细针上,再将两侧磁性吻合环相吸便完成血管吻合。选取20只SD大鼠利用磁性吻合装置进行肝下下腔静脉端端磁吻合,分析大鼠术中血管阻断时间、术后存活情况、术后吻合口通畅情况和术后吻合口大体观及组织学检查情况。  结果  所有大鼠均顺利完成大鼠肝下下腔静脉端端磁吻合,血管阻断时间为4~6 min。其中1只大鼠在术后10 d死亡,其余大鼠均存活至术后2个月。存活大鼠术后1 d、3 d、1个月及2个月血管吻合口通畅率分别为100%、100%、95%及95%。术后2个月时血管吻合装置未发现明显移位、成角,血管吻合环未发现明显腐蚀、裂解迹象,周围组织未见明显增生及水肿,两侧血管断端已完全愈合,吻合口未见明显狭窄及血栓形成。组织学检查发现吻合口两侧血管管壁连续性良好,吻合口内面可见内皮细胞覆盖,未见血栓及纤维组织附着。  结论  利用本研究设计的磁性吻合装置施行大鼠肝下下腔静脉端端磁吻合是安全可行的。

     

  • 图  1  适用于大鼠肝下下腔静脉端端吻合的磁性吻合装置

    注:A图为外环,其上均匀分布针孔用于加载细针;B图为内环与加载细针的外环粘接制成的磁性吻合装置。

    Figure  1.  Magnetic anastomosis device for end-to-end anastomosis of the infrahepatic inferior vena cava in rats

    图  2  大鼠下腔静脉端端磁吻合的实验步骤

    注:A图为安装磁性吻合装置;B图为吻合结束;C图为术后吻合口造影。

    Figure  2.  Experimental procedure of end-to-end magnetic anastomosis of the inferior vena cava in rats

    图  3  术后吻合口大体观及组织学检查

    注:A图为术后吻合口大体观;B图为术后吻合口通畅;C图为吻合口局部无血栓及纤维组织附着;D图为吻合口组织学检查(免疫荧光,×10)。

    Figure  3.  Gross view and histological examination of postoperative anastomotic stoma

  • [1] LV Y, SHI Y, Scientific Committee of the First International Conference of Magnetic Surgery. Xi'an consensus on magnetic surgery[J]. Hepatobiliary Surg Nutr, 2019, 8(2): 177-178. DOI: 10.21037/hbsn.2019.03.01.
    [2] LI Y, LIU XM, ZHANG HK, et al. Magnetic compression anastomosis in laparoscopic pancreatoduodenectomy: a preliminary study[J]. J Surg Res, 2021, 258: 162-169. DOI: 10.1016/j.jss.2020.08.044.
    [3] LIU K, LU Q, HUANG GB, et al. Use of the magnetic compression technique in sleeve gastrectomy: a preliminary study[J]. Chin Med J (Engl), 2020, 133(22): 2768-2770. DOI: 10.1097/CM9.0000000000001131.
    [4] JANG SI, CHO JH, LEE DK. Magnetic compression anastomosis for the treatment of post-transplant biliary stricture[J]. Clin Endosc, 2020, 53(3): 266-275. DOI: 10.5946/ce.2020.095.
    [5] LIU XM, LI Y, XIANG JX, et al. Magnetic compression anastomosis for biliojejunostomy and pancreaticojejunostomy in Whipple's procedure: an initial clinical study[J]. J Gastroenterol Hepatol, 2019, 34(3): 589-594. DOI: 10.1111/jgh.14500.
    [6] LU Q, LIU K, ZHANG W, et al. End-to-end vascular anastomosis using a novel magnetic compression device in rabbits: a preliminary study[J]. Sci Rep, 2020, 10(1): 16712. DOI: 10.1038/s41598-020-73419-z.
    [7] HEITZER M, BROCKHAUS J, KNIHA K, et al. Mechanical strength and hydrostatic testing of vivo adhesive in sutureless microsurgical anastomoses: an ex vivo study[J]. Sci Rep, 2021, 11(1): 13598. DOI: 10.1038/s41598-021-92998-z.
    [8] 刘仕琪, 慈红波, 雷鹏, 等. 磁压榨吻合技术实现犬腹主动脉人工血管置换快速无缝线吻合[J]. 器官移植, 2021, 12(2): 191-196. DOI: 10.3969/j.issn.1674-7445.2021.02.009.

    LIU SQ, CI HB, LEI P, et al. Rapid and sutureless anastomosis of artificial vascular replacement of abdominal aorta in dog models using magnetic compression anastomosis technique[J]. Organ Transplant, 2021, 12(2): 191-196. DOI: 10.3969/j.issn.1674-7445.2021.02.009.
    [9] WANG HH, MA J, WANG SP, et al. Magnetic anastomosis rings to create portacaval shunt in a canine model of portal hypertension[J]. J Gastrointest Surg, 2019, 23(11): 2184-2192. DOI: 10.1007/s11605-018-3888-5.
    [10] SHI Y, ZHANG W, DENG YL, et al. Magnetic ring anastomosis of suprahepatic vena cava: novel technique for liver transplantation in rat[J]. Transpl Int, 2015, 28(1): 89-94. DOI: 10.1111/tri.12418.
    [11] YANG L, LU J, WANG Y, et al. A rat model of orthotopic liver transplantation using a novel magnetic anastomosis technique for suprahepatic vena cava reconstruction[J]. J Vis Exp, 2018, 133: 56933. DOI: 10.3791/56933.
    [12] SCOTT BB, RANDOLPH MA, GUASTALDI FPS, et al. Light-activated vascular anastomosis[J]. Surg Innov, 2022, DOI: 10.1177/15533506221104382[Epubaheadofprint].
    [13] LIN SL, LIN CM, HUNG YJ, et al. Artery reconstruction in right lobe living donor liver transplantation: donor-recipient vessel ratio is key to choosing recipient artery[J]. Ann Plast Surg, 2022, 88(6): 674-678. DOI: 10.1097/SAP.0000000000003232.
    [14] AIKAWA A, MURAMATSU M, TAKAHASHI Y, et al. Surgical challenge in pediatric kidney transplant vascular anastomosis[J]. Exp Clin Transplant, 2018, 16 (Suppl 1): 14-19. DOI: 10.6002/ect.TOND-TDTD2017.L41.
    [15] LIU C, LI P, LIU J, et al. Management of intraoperative failure of anterolateral thigh flap transplantation in head and neck reconstruction[J]. J Oral Maxillofac Surg, 2020, 78(6): 1027-1033. DOI: 10.1016/j.joms.2020.02.010.
    [16] KAYA K, MUNGAN U. Multiple vascular reconstructions during pancreatectomy: surgical techniques and strategies[J]. Vascular, 2022, DOI: 10.1177/17085381221091053[Epubaheadofprint].
    [17] NANASHIMA A, ABO T, KUNIZAKI M, et al. Portal vein anastomosis with parachute method in hepatectomy and pancreatectomy[J]. Hepatogastroenterology, 2012, 59(116): 1000-1002. DOI: 10.5754/hge12058.
    [18] 文虹杰, 李灿章, 李俊男, 等. 微血管吻合器与手工缝合在游离皮瓣修复软组织缺损中的对比研究: 一项基于PRISMA原则的Meta分析[J]. 中华显微外科杂志, 2021, 44(1): 36-42. DOI: 10.3760/cma.j.cn441206-20191105-00349.

    WEN HJ, LI CZ, LI JN, et al. Comparative study of microvascular anastomostic device and hand-sewn in free flap repair of soft tissue defects: a Meta analysis based on PRISMA principle[J]. Chin J Microsurg, 2021, 44(1): 36-42. DOI: 10.3760/cma.j.cn441206-20191105-00349.
    [19] TAJIMA M, KONO Y, NINOMIYA S, et al. Safety and effectiveness of mechanical versus hand suturing of intestinal anastomoses in an animal model of peritonitis[J]. Exp Ther Med, 2012, 4(2): 211-215. DOI: 10.3892/etm.2012.588.
    [20] 李宇, 朱浩阳, 孙昊, 等. 内镜下磁压榨胆肠吻合术治疗腹部复杂手术后胆道梗阻的临床疗效[J]. 中华消化外科杂志, 2020, 19(5): 544-551. DOI: 10.3760/cma.j.cn115610-20200325-00196.

    LI Y, ZHU HY, SUN H, et al. Clinical efficacy of endoscopic magnetic compression bilio-enteric anastomosis for the treatment of biliary obstruction after complex abdominal surgery[J]. Chin J Dig Surg, 2020, 19(5): 544-551. DOI: 10.3760/cma.j.cn115610-20200325-00196.
    [21] KAMADA T, OHDAIRA H, TAKEUCHI H, et al. New technique for magnetic compression anastomosis without incision for gastrointestinal obstruction[J]. J Am Coll Surg, 2021, 232(2): 170-177. DOI: 10.1016/j.jamcollsurg.2020.10.012.
    [22] KAWABATA H, NAKASE K, OKAZAKI Y, et al. Endoscopic ultrasonography for pre-operative local assessment and endoscopic ultrasonography-guided marking before gastrojejunostomy for duodenal obstruction using magnetic compression anastomosis[J]. J Clin Transl Res, 2021, 7(5): 621-624.
    [23] LI Y, SUN H, YAN X, et al. Magnetic compression anastomosis for the treatment of benign biliary strictures: a clinical study from China[J]. Surg Endosc, 2020, 34(6): 2541-2550. DOI: 10.1007/s00464-019-07063-8.
    [24] LI Y, ZHANG N, LV Y, et al. Expert consensus on magnetic recanalization technique for biliary anastomotic strictures after liver transplantation[J]. Hepatobiliary Surg Nutr, 2021, 10(3): 401-404. DOI: 10.21037/hbsn-20-800.
    [25] LIU S, FANG Y, LV Y, et al. Magnetic compression stricturoplasty in patients with severe stricture after simultaneous esophageal atresia and duodenal obstruction repair: a case report[J]. Exp Ther Med, 2022, 23(1): 93. DOI: 10.3892/etm.2021.11016.
    [26] HU B, YE LS. Endoscopic applications of magnets for the treatment of gastrointestinal diseases[J]. World J Gastrointest Endosc, 2019, 11(12): 548-560. DOI: 10.4253/wjge.v11.i12.548.
    [27] BRUNS NE, GLENN IC, CRANER DR, et al. Magnetic compression anastomosis (magnamosis) in a porcine esophagus: proof of concept for potential application in esophageal atresia[J]. J Pediatr Surg, 2019, 54(3): 429-433. DOI: 10.1016/j.jpedsurg.2018.09.014.
    [28] STERLIN A, EVANS L, MAHLER S, et al. An experimental study on long term outcomes after magnetic esophageal compression anastomosis in piglets[J]. J Pediatr Surg, 2022, 57(1): 34-40. DOI: 10.1016/j.jpedsurg.2021.09.032.
    [29] DORMAN RM, VALI K, HARMON CM, et al. Repair of esophageal atresia with proximal fistula using endoscopic magnetic compression anastomosis (magnamosis) after staged lengthening[J]. Pediatr Surg Int, 2016, 32(5): 525-528. DOI: 10.1007/s00383-016-3889-y.
    [30] ZHANG H, XUE F, ZHANG J, et al. A novel magnetic device for laparoscopic cholangiojejunostomy[J]. J Surg Res, 2017, 218: 271-276. DOI: 10.1016/j.jss.2017.05.094.
    [31] BORTOLOTTI M. Magnetic challenge against gastroesophageal reflux[J]. World J Gastroenterol, 2021, 27(48): 8227-8241. DOI: 10.3748/wjg.v27.i48.8227.
    [32] GUIDOZZI N, WIGGINS T, AHMED AR, et al. Laparoscopic magnetic sphincter augmentation versus fundoplication for gastroesophageal reflux disease: systematic review and pooled analysis[J]. Dis Esophagus, 2019, 32(9): doz031. DOI: 10.1093/dote/doz031.
    [33] DOBASHI A, DETERS JL, MILLER CA, et al. Magnet-assist endoscopic augmentation of the lower esophageal sphincter for treatment of gastroesophageal reflux disease: cadaveric and survival studies in a porcine model (with video)[J]. Surg Endosc, 2021, 35(8): 4478-4484. DOI: 10.1007/s00464-020-07954-1.
    [34] SUN C, ZHANG AD, CHEN HH, et al. Magnet-targeted delivery of bone marrow-derived mesenchymal stem cells improves therapeutic efficacy following hypoxic-ischemic brain injury[J]. Neural Regen Res, 2021, 16(11): 2324-2329. DOI: 10.4103/1673-5374.310942.
    [35] BLYAKHMAN FA, MELNIKOV GY, MAKAROVA EB, et al. Effects of constant magnetic field to the proliferation rate of human fibroblasts grown onto different substrates: tissue culture polystyrene, polyacrylamide hydrogel and ferrogels γ-Fe2O3 magnetic nanoparticles[J]. Nanomaterials (Basel), 2020, 10(9): 1697. DOI: 10.3390/nano10091697.
    [36] LIBRING S, ENRÍQUEZ Á, LEE H, et al. In vitro magnetic techniques for investigating cancer progression[J]. Cancers (Basel), 2021, 13(17): 4440. DOI: 10.3390/cancers13174440.
  • 加载中
图(4)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  121
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 网络出版日期:  2022-07-14
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回