留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线粒体融合蛋白2与缺血-再灌注损伤

欧志宇, 苗芸. 线粒体融合蛋白2与缺血-再灌注损伤[J]. 器官移植, 2022, 13(2): 277-282. doi: 10.3969/j.issn.1674-7445.2022.02.019
引用本文: 欧志宇, 苗芸. 线粒体融合蛋白2与缺血-再灌注损伤[J]. 器官移植, 2022, 13(2): 277-282. doi: 10.3969/j.issn.1674-7445.2022.02.019
Ou Zhiyu, Miao Yun. Mitofusin 2 and ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 277-282. doi: 10.3969/j.issn.1674-7445.2022.02.019
Citation: Ou Zhiyu, Miao Yun. Mitofusin 2 and ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 277-282. doi: 10.3969/j.issn.1674-7445.2022.02.019

线粒体融合蛋白2与缺血-再灌注损伤

doi: 10.3969/j.issn.1674-7445.2022.02.019
基金项目: 

国家自然科学基金 82070770

广东省自然科学基金 2020A1515010674

广州市科技计划项目 201803010109

南方医院院长基金 2018B009

南方医院院长基金 2018C003

大学生创新创业训练计划项目 202012121046

大学生创新创业训练计划项目 X202012121239

详细信息
    作者简介:
    通讯作者:

    苗芸,女,1978年生,博士,主任医师,研究方向为肾移植,Email:miaoyunecho@126.com

  • 中图分类号: R617, Q731

Mitofusin 2 and ischemia-reperfusion injury

More Information
  • 摘要: 线粒体是重要的细胞器之一,由线粒体外膜和线粒体内膜组成,其结构和功能受线粒体动力学调控。线粒体融合相关蛋白和线粒体分裂相关蛋白可参与线粒体融合和分裂过程,调控线粒体动力学,进而调节细胞结构、功能及能量代谢。其中线粒体融合蛋白(MFN)2是一种位于哺乳动物线粒体外膜上的蛋白,具有三磷酸鸟苷酶活性,可介导线粒体融合,参与线粒体自噬、线粒体-内质网结构偶联的形成和细胞凋亡等生理过程,并可显著影响缺血-再灌注损伤(IRI)的发生发展。本文综述MFN2的结构与调节、MFN2的功能、MFN2在IRI中作用的相关文献,探讨MFN2与IRI的关系及相关机制,以期为IRI的防治提供新的靶点和思路。

     

  • 图  1  MFN2的结构及其功能

    注:A图为MFN2的结构; B图为线粒体融合; C图为线粒体自噬; D图为MAM。

    Figure  1.  Structure and function of MFN2

  • [1] CHAN DC. Mitochondrial dynamics and its involvement in disease[J]. Annu Rev Pathol, 2020, 15: 235-259. DOI: 10.1146/annurev-pathmechdis-012419-032711.
    [2] 赵永才, 高炳宏. 线粒体动力学与细胞能量代谢的关系及运动干预研究进展[J]. 生理学报, 2019, 71(4): 625-636. DOI: 10.13294/j.aps.2019.0037.

    ZHAO YC, GAO BH. Research advances in relationship between mitochondrial dynamics and cellular energy metabolism and exercise intervention[J]. Acta Physiol Sinica, 2019, 71(4): 625-636. DOI: 10.13294/j.aps.2019.0037.
    [3] CHANDHOK G, LAZAROU M, NEUMANN B. Structure, function, and regulation of mitofusin-2 in health and disease[J]. Biol Rev Camb Philos Soc, 2018, 93(2): 933-949. DOI: 10.1111/brv.12378.
    [4] FILADI R, GREOTTI E, PIZZO P. Highlighting the endoplasmic reticulum-mitochondria connection: focus on mitofusin 2[J]. Pharmacol Res, 2018, 128: 42-51. DOI: 10.1016/j.phrs.2018.01.003.
    [5] GALI RAMAMOORTHY T, LAVERNY G, SCHLAGOWSKI AI, et al. The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles[J]. Nat Commun, 2015, 6: 10210. DOI: 10.1038/ncomms10210.
    [6] LEBOUCHER GP, TSAI YC, YANG M, et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis[J]. Mol Cell, 2012, 47(4): 547-557. DOI: 10.1016/j.molcel.2012.05.041.
    [7] EL-HATTAB AW, SULEIMAN J, ALMANNAI M, et al. Mitochondrial dynamics: biological roles, molecular machinery, and related diseases[J]. Mol Genet Metab, 2018, 125(4): 315-321. DOI: 10.1016/j.ymgme.2018.10.003.
    [8] CHEN H, DETMER SA, EWALD AJ, et al. Mitofusins MFN1 and MFN2 coordinately regulate mitochondrial fusion and are essential for embryonic development[J]. J Cell Biol, 2003, 160(2): 189-200. DOI: 10.1083/jcb.200211046.
    [9] MA K, CHEN G, LI W, et al. Mitophagy, mitochondrial homeostasis, and cell fate[J]. Front Cell Dev Biol, 2020, 8: 467. DOI: 10.3389/fcell.2020.00467.
    [10] ONISHI M, YAMANO K, SATO M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705. DOI: 10.15252/embj.2020104705.
    [11] LŐRINCZ P, JUHÁSZ G. Autophagosome-lysosome fusion[J]. J Mol Biol, 2020, 432(8): 2462-2482. DOI: 10.1016/j.jmb.2019.10.028.
    [12] HU Y, CHEN H, ZHANG L, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses[J]. Autophagy, 2021, 17(5): 1142-1156. DOI: 10.1080/15548627.2020.1749490.
    [13] TUR J, PEREIRA-LOPES S, VICO T, et al. Mitofusin 2 in macrophages links mitochondrial ROS production, cytokine release, phagocytosis, autophagy, and bactericidal activity[J]. Cell Rep, 2020, 32(8): 108079. DOI: 10.1016/j.celrep.2020.108079.
    [14] WANG T, ZHU Q, CAO B, et al. Cadmium induces mitophagy via AMP-activated protein kinases activation in a PINK1/Parkin-dependent manner in PC12 cells[J]. Cell Prolif, 2020, 53(6): e12817. DOI: 10.1111/cpr.12817.
    [15] PERRONE M, CAROCCIA N, GENOVESE I, et al. The role of mitochondria-associated membranes in cellular homeostasis and diseases[J]. Int Rev Cell Mol Biol, 2020, 350: 119-196. DOI: 10.1016/bs.ircmb.2019.11.002.
    [16] HAN S, ZHAO F, HSIA J, et al. The role of MFN2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo[J]. J Cell Sci, 2021, 134(13): jcs253443. DOI: 10.1242/jcs.253443.
    [17] GAO J, QIN A, LIU D, et al. Endoplasmic reticulum mediates mitochondrial transfer within the osteocyte dendritic network[J]. Sci Adv, 2019, 5(11): eaaw7215. DOI: 10.1126/sciadv.aaw7215.
    [18] VANCE JE. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present[J]. J Lipid Res, 2018, 59(6): 923-944. DOI: 10.1194/jlr.R084004.
    [19] HAILEY DW, RAMBOLD AS, SATPUTE-KRISHNAN P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation[J]. Cell, 2010, 141(4): 656-667. DOI: 10.1016/j.cell.2010.04.009.
    [20] GONG Y, LIN J, MA Z, et al. Mitochondria-associated membrane-modulated Ca2+ transfer: a potential treatment target in cardiac ischemia reperfusion injury and heart failure[J]. Life Sci, 2021, 278: 119511. DOI: 10.1016/j.lfs.2021.119511.
    [21] D'ARCY MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592. DOI: 10.1002/cbin.11137.
    [22] DU M, YU S, SU W, et al. Mitofusin 2 but not mitofusin 1 mediates Bcl-XL-induced mitochondrial aggregation[J]. J Cell Sci, 2020, 133(20): jcs245001. DOI: 10.1242/jcs.245001.
    [23] BOCK FJ, TAIT SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100. DOI: 10.1038/s41580-019-0173-8.
    [24] WANG W, LIU X, GUO X, et al. Mitofusin-2 triggers cervical carcinoma cell Hela apoptosis via mitochondrial pathway in mouse model[J]. Cell Physiol Biochem, 2018, 46(1): 69-81. DOI: 10.1159/000488410.
    [25] ALLEGRA A, INNAO V, ALLEGRA AG, et al. Relationship between mitofusin 2 and cancer[J]. Adv Protein Chem Struct Biol, 2019, 116: 209-236. DOI: 10.1016/bs.apcsb.2018.11.009.
    [26] WANG W, XIE Q, ZHOU X, et al. Mitofusin-2 triggers mitochondria Ca2+ influx from the endoplasmic reticulum to induce apoptosis in hepatocellular carcinoma cells[J]. Cancer Lett, 2015, 358(1): 47-58. DOI: 10.1016/j.canlet.2014.12.025.
    [27] PENG C, RAO W, ZHANG L, et al. Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways[J]. Int J Biochem Cell Biol, 2015, 69: 29-40. DOI: 10.1016/j.biocel.2015.09.011.
    [28] NIEUWENHUIJS-MOEKE GJ, PISCHKE SE, BERGER SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. DOI: 10.3390/jcm9010253.
    [29] KONG WN, LI W, BAI C, et al. Augmenter of liver regeneration-mediated mitophagy protects against hepatic ischemia/reperfusion injury[J]. Am J Transplant, 2021, 22(1): 130-143. DOI: 10.1111/ajt.16757.
    [30] CHUN SK, LEE S, FLORES-TORO J, et al. Loss of sirtuin 1 and mitofusin 2 contributes to enhanced ischemia/reperfusion injury in aged livers[J]. Aging Cell, 2018, 17(4): e12761. DOI: 10.1111/acel.12761.
    [31] LIU M, LI X, HUANG D. MFN2 overexpression attenuates cardio-cerebrovascular ischemia-reperfusion injury through mitochondrial fusion and activation of the AMPK/SIRT3 signaling[J]. Front Cell Dev Biol, 2020, 8: 598078. DOI: 10.3389/fcell.2020.598078.
    [32] OLMEDO I, PINO G, RIQUELME JA, et al. Inhibition of the proteasome preserves mitofusin-2 and mitochondrial integrity, protecting cardiomyocytes during ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165659. DOI: 10.1016/j.bbadis.2019.165659.
    [33] PENG C, RAO W, ZHANG L, et al. Mitofusin 2 exerts a protective role in ischemia reperfusion injury through increasing autophagy[J]. Cell Physiol Biochem, 2018, 46(6): 2311-2324. DOI: 10.1159/000489621.
    [34] ZHANG Z, YU J. NR4A1 promotes cerebral ischemia reperfusion injury by repressing MFN2-mediated mitophagy and inactivating the MAPK-ERK-CREB signaling pathway[J]. Neurochem Res, 2018, 43(10): 1963-1977. DOI: 10.1007/s11064-018-2618-4.
    [35] LIANG RP, JIA JJ, LI JH, et al. Mitofusin-2 mediated mitochondrial Ca2+ uptake 1/2 induced liver injury in rat remote ischemic perconditioning liver transplantation and alpha mouse liver-12 hypoxia cell line models[J]. World J Gastroenterol, 2017, 23(38): 6995-7008. DOI: 10.3748/wjg.v23.i38.6995.
    [36] ZHOU Y, TONG Z, JIANG S, et al. The roles of endoplasmic reticulum in NLRP3 inflammasome activation[J]. Cells, 2020, 9(5): 1219. DOI: 10.3390/cells9051219.
    [37] HAMASAKI M, FURUTA N, MATSUDA A, et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature, 2013, 495(7441): 389-393. DOI: 10.1038/nature11910.
  • 加载中
图(2)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  144
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回