留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微囊化胰岛移植优化策略研究进展

李万里, 丰丙政, 杨玉伟, 等. 微囊化胰岛移植优化策略研究进展[J]. 器官移植, 2022, 13(2): 258-265. doi: 10.3969/j.issn.1674-7445.2022.02.016
引用本文: 李万里, 丰丙政, 杨玉伟, 等. 微囊化胰岛移植优化策略研究进展[J]. 器官移植, 2022, 13(2): 258-265. doi: 10.3969/j.issn.1674-7445.2022.02.016
Li Wanli, Feng Bingzheng, Yang Yuwei, et al. Research progress on optimization strategies for microencapsulated islet transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 258-265. doi: 10.3969/j.issn.1674-7445.2022.02.016
Citation: Li Wanli, Feng Bingzheng, Yang Yuwei, et al. Research progress on optimization strategies for microencapsulated islet transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 258-265. doi: 10.3969/j.issn.1674-7445.2022.02.016

微囊化胰岛移植优化策略研究进展

doi: 10.3969/j.issn.1674-7445.2022.02.016
基金项目: 

广西自然科学基金面上项目 2020GXNSFAA238024

广西壮族自治区中青年教师基础能力提升项目 2017KY0311

广西壮族自治区中青年教师基础能力提升项目 2019KY0317

广西中医药大学一流学科建设项目 2018XK085

广西中医药大学一流学科建设项目 2019XK173

广西中医药大学一流学科建设项目青年基金项目 2019XK176

广西中医药大学青年基金项目 2019QN025

广西中医药大学研究生教育创新计划项目 YCXJ2021091

详细信息
    作者简介:
    通讯作者:

    高宏君,男,1972年生,博士,主任医师,研究方向为器官移植与胰岛移植,Email:gao4056@163.com

  • 中图分类号: R617, R587.1

Research progress on optimization strategies for microencapsulated islet transplantation

More Information
  • 摘要: 胰岛移植是治疗糖尿病的有效方案之一,但目前仍存在供者短缺以及长期应用免疫抑制剂所致的不良反应等问题,导致移植后胰岛存活受限。微囊化胰岛移植技术可在一定程度上克服这些困难,但微囊内免疫隔离微环境破坏、氧气和营养物质供应不足等多种因素限制了微囊化胰岛移植的临床应用。近年来,关于提高微囊化胰岛移植效果的研究逐渐增多,干细胞在微囊化胰岛移植中的应用也逐步成为研究热点。因此,本文围绕微囊化胰岛移植的优化策略及干细胞在微囊化胰岛移植中的应用进行综述,探讨微囊化胰岛移植潜在的改进方法,旨在为微囊化技术在胰岛移植中的进一步临床应用研究提供参考。

     

  • [1] 杨继建, 黄庆先, 陈丽. 胰岛细胞封装技术的研究进展[J]. 器官移植, 2021, 12(3): 336-343. DOI: 10.3969/j.issn.1674-7445.2021.03.013.

    YANG JJ, HUANG QX, CHEN L. Research progress on islet cell encapsulation technology[J]. Organ Transplant, 2021, 12(3): 336-343. DOI: 10.3969/j.issn.1674-7445.2021.03.013.
    [2] 韩毅, 董海青, 李胜, 等. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668. DOI: 10.7536/PC180213.

    HAN Y, DONG HQ, LI S, et al. Pancreatic islet encapsulation technology and its application in islet transplantation[J]. Prog Chem, 2018, 30(11): 1660-1668. DOI: 10.7536/PC180213.
    [3] SAMOJLIK MM, STABLER CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in type 1 diabetes[J]. Acta Biomater, 2021, 133: 87-101. DOI: 10.1016/j.actbio.2021.05.039.
    [4] KENDALL WF JR, OPARA EC. Polymeric materials for perm-selective coating of alginate microbeads[J]. Methods Mol Biol, 2017, 1479: 95-109. DOI: 10.1007/978-1-4939-6364-5_7.
    [5] OPARA EC, MCQUILLING JP, FARNEY AC. Microencapsulation of pancreatic islets for use in a bioartificial pancreas[J]. Methods Mol Biol, 2013, 1001: 261-266. DOI: 10.1007/978-1-62703-363-3_21.
    [6] CHEN T, YUAN J, DUNCANSON S, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression[J]. Am J Transplant, 2015, 15(3): 618-627. DOI: 10.1111/ajt.13049.
    [7] SAFLEY SA, BARBER GF, HOLDCRAFT RW, et al. Multiple clinically relevant immunotherapies prolong the function of microencapsulated porcine islet xenografts in diabetic NOD mice without the use of anti-CD154 mAb[J]. Xenotransplantation, 2020, 27(4): e12577. DOI: 10.1111/xen.12577.
    [8] HWANG PTJ, SHAH DK, GARCIA JA, et al. Encapsulation of human islets using a biomimetic self-assembled nanomatrix gel for protection against cellular inflammatory responses[J]. ACS Biomater Sci Eng, 2017, 3(9): 2110-2119. DOI: 10.1021/acsbiomaterials.7b00261.
    [9] VERHEYEN CA, MORALES L, SUSSMAN J, et al. Characterization of polyethylene glycol-reinforced alginate microcapsules for mechanically stable cell immunoisolation[J]. Macromol Mater Eng, 2019, 304(4): 1800679. DOI: 10.1002/mame.201800679.
    [10] TODA S, FATTAH A, ASAWA K, et al. Optimization of islet microencapsulation with thin polymer membranes for long-term stability[J]. Micromachines (Basel), 2019, 10(11): 755. DOI: 10.3390/mi10110755.
    [11] MRIDHA AR, DARGAVILLE TR, DALTON PD, et al. Prevascularized retrievable hybrid implant to enhance function of subcutaneous encapsulated islets[J]. Tissue Eng Part A, 2020, DOI: 10.1089/ten.TEA.2020.0179 [Epub ahead of print].
    [12] OPARA EC, KENDALL WF JR. Immunoisolation techniques for islet cell transplantation[J]. Expert Opin Biol Ther, 2002, 2(5): 503-511. DOI: 10.1517/14712598.2.5.503.
    [13] OMAMI M, MCGARRIGLE JJ, REEDY M, et al. Islet microencapsulation: strategies and clinical status in diabetes[J]. Curr Diab Rep, 2017, 17(7): 47. DOI: 10.1007/s11892-017-0877-0.
    [14] TAEMEH MA, SHIRAVANDI A, KORAYEM MA, et al. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers[J]. Carbohydr Polym, 2020, 228: 115419. DOI: 10.1016/j.carbpol.2019.115419.
    [15] DHARANI SR, SRINIVASAN R, SARATH R, et al. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications[J]. Folia Microbiol (Praha), 2020, 65(6): 937-954. DOI: 10.1007/s12223-020-00802-8.
    [16] CAMPANHA-RODRIGUES AL, GRAZIOLI G, OLIVEIRA TC, et al. Therapeutic potential of laminin-biodritin microcapsules for type 1 diabetes mellitus[J]. Cell Transplant, 2015, 24(2): 247-261. DOI: 10.3727/096368913X675160.
    [17] HARRINGTON S, OTT L, KARANU F, et al. A versatile microencapsulation platform for hyaluronic acid and polyethylene glycol[J]. Tissue Eng Part A, 2021, 27(3/4): 153-164. DOI: 10.1089/ten.TEA.2019.0286.
    [18] PARK HS, KIM JW, LEE SH, et al. Antifibrotic effect of rapamycin containing polyethylene glycol-coated alginate microcapsule in islet xenotransplantation[J]. J Tissue Eng Regen Med, 2017, 11(4): 1274-1284. DOI: 10.1002/term.2029.
    [19] ALAGPULINSA DA, CAO JJL, DRISCOLL RK, et al. Alginate-microencapsulation of human stem cell-derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression[J]. Am J Transplant, 2019, 19(7): 1930-1940. DOI: 10.1111/ajt.15308.
    [20] FARAH S, DOLOFF JC, MÜLLER P, et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations[J]. Nat Mater, 2019, 18(8): 892-904. DOI: 10.1038/s41563-019-0377-5.
    [21] AZADI SA, VASHEGHANI-FARAHANI E, HASHEMI-NAJAFBABADI S, et al. Co-encapsulation of pancreatic islets and pentoxifylline in alginate-based microcapsules with enhanced immunosuppressive effects[J]. Prog Biomater, 2016, 5: 101-109. DOI: 10.1007/s40204-016-0049-3.
    [22] KIM MJ, PARK HS, KIM JW, et al. Suppression of fibrotic reactions of chitosan-alginate microcapsules containing porcine islets by dexamethasone surface coating[J]. Endocrinol Metab (Seoul), 2021, 36(1): 146-156. DOI: 10.3803/EnM.2021.879.
    [23] MARFIL-GARZA BA, POLISHEVSKA K, PEPPER AR, et al. Current state and evidence of cellular encapsulation strategies in type 1 diabetes[J]. Compr Physiol, 2020, 10(3): 839-878. DOI: 10.1002/cphy.c190033.
    [24] WU S, WANG L, FANG Y, et al. Advances in encapsulation and delivery strategies for islet transplantation[J]. Adv Healthc Mater, 2021, 10(20): e2100965. DOI: 10.1002/adhm.202100965.
    [25] LIU Q, WANG X, CHIU A, et al. A zwitterionic polyurethane nanoporous device with low foreign-body response for islet encapsulation[J]. Adv Mater, 2021, 33(39): e2102852. DOI: 10.1002/adma.202102852.
    [26] WEAVER JD, HEADEN DM, CORONEL MM, et al. Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site[J]. Am J Transplant, 2019, 19(5): 1315-1327. DOI: 10.1111/ajt.15168.
    [27] DE KLERK E, HEBROK M. Stem cell-based clinical trials for diabetes mellitus[J]. Front Endocrinol (Lausanne), 2021, 12: 631463. DOI: 10.3389/fendo.2021.631463.
    [28] SENIOR PA, PETTUS JH. Stem cell therapies for type 1 diabetes: current status and proposed road map to guide successful clinical trials[J]. Diabet Med, 2019, 36(3): 297-307. DOI: 10.1111/dme.13846.
    [29] ZHU H, LI W, LIU Z, et al. Selection of implantation sites for transplantation of encapsulated pancreatic islets[J]. Tissue Eng Part B Rev, 2018, 24(3): 191-214. DOI: 10.1089/ten.TEB.2017.0311.
    [30] DAMYAR K, FARAHMAND V, WHALEY D, et al. An overview of current advancements in pancreatic islet transplantation into the omentum[J]. Islets, 2021, 13(5/6): 115-120. DOI: 10.1080/19382014.2021.1954459.
    [31] PAPAS KK, AVGOUSTINIATOS ES, SUSZYNSKI TM. Effect of oxygen supply on the size of implantable islet-containing encapsulation devices[J]. Panminerva Med, 2016, 58(1): 72-77.
    [32] MCQUILLING JP, SITTADJODY S, PARETA R, et al. Retrieval of microencapsulated islet grafts for post-transplant evaluation[J]. Methods Mol Biol, 2017, 1479: 157-171. DOI: 10.1007/978-1-4939-6364-5_12.
    [33] MCQUILLING JP, SITTADJODY S, PENDERGRAFT S, et al. Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas[J]. Biomater Sci, 2017, 5(12): 2437-2447. DOI: 10.1039/c7bm00790f.
    [34] SHARMA V, HUNCKLER M, RAMASUBRAMANIAN MK, et al. Microfluidic approach to cell microencapsulation[J]. Methods Mol Biol, 2017, 1479: 71-76. DOI: 10.1007/978-1-4939-6364-5_5.
    [35] PATHAK S, PHAM TT, JEONG JH, et al. Immunoisolation of pancreatic islets via thin-layer surface modification[J]. J Control Release, 2019, 305: 176-193. DOI: 10.1016/j.jconrel.2019.04.034.
    [36] CHEN Y, NGUYEN DT, KOKIL GR, et al. Microencapsulated islet-like microtissues with toroid geometry for enhanced cellular viability[J]. Acta Biomater, 2019, 97: 260-271. DOI: 10.1016/j.actbio.2019.08.018.
    [37] CAÑIBANO-HERNÁNDEZ A, SAENZ DEL BURGO L, ESPONA-NOGUERA A, et al. Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules[J]. Int J Pharm, 2019, 557: 192-198. DOI: 10.1016/j.ijpharm.2018.12.062.
    [38] WANG JK, CHEAM NMJ, IRVINE SA, et al. Interpenetrating network of alginate-human adipose extracellular matrix hydrogel for islet cells encapsulation[J]. Macromol Rapid Commun, 2020, 41(21): e2000275. DOI: 10.1002/marc.202000275.
    [39] CAÑIBANO-HERNÁNDEZ A, SAENZ DEL BURGO L, ESPONA-NOGUERA A, et al. Hyaluronic acid promotes differentiation of mesenchymal stem cells from different sources toward pancreatic progenitors within three-dimensional alginate matrixes[J]. Mol Pharm, 2019, 16(2): 834-845. DOI: 10.1021/acs.molpharmaceut.8b01126.
    [40] JARA C, OYARZUN-AMPUERO F, CARRIÓN F, et al. Microencapsulation of cellular aggregates composed of differentiated insulin and glucagon-producing cells from human mesenchymal stem cells derived from adipose tissue[J]. Diabetol Metab Syndr, 2020, 12: 66. DOI: 10.1186/s13098-020-00573-9.
    [41] MONTANUCCI P, PESCARA T, GRECO A, et al. Co-microencapsulation of human umbilical cord-derived mesenchymal stem and pancreatic islet-derived insulin producing cells in experimental type 1 diabetes[J]. Diabetes Metab Res Rev, 2021, 37(2): e3372. DOI: 10.1002/dmrr.3372.
    [42] KOGAWA R, NAKAMURA K, MOCHIZUKI Y. A new islet transplantation method combining mesenchymal stem cells with recombinant peptide pieces, microencapsulated islets, and mesh bags[J]. Biomedicines, 2020, 8(9): 299. DOI: 10.3390/biomedicines8090299.
    [43] MOCHIZUKI Y, KOGAWA R, TAKEGAMI R, et al. Co-microencapsulation of islets and MSC CellSaics, mosaic-like aggregates of MSCs and recombinant peptide pieces, and therapeutic effects of their subcutaneous transplantation on diabetes[J]. Biomedicines, 2020, 8(9): 318. DOI: 10.3390/biomedicines8090318.
    [44] LAPORTE C, TUBBS E, PIERRON M, et al. Improved human islets' viability and functionality with mesenchymal stem cells and Arg-Gly-Asp tripeptides supplementation of alginate micro-encapsulated islets in vitro[J]. Biochem Biophys Res Commun, 2020, 528(4): 650-657. DOI: 10.1016/j.bbrc.2020.05.107.
    [45] SONG N, SCHOLTEMEIJER M, SHAH K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential[J]. Trends Pharmacol Sci, 2020, 41(9): 653-664. DOI: 10.1016/j.tips.2020.06.009.
    [46] SIM EZ, SHIRAKI N, KUME S. Recent progress in pancreatic islet cell therapy[J]. Inflamm Regen, 2021, 41(1): 1. DOI: 10.1186/s41232-020-00152-5.
    [47] BOURGEOIS S, SAWATANI T, VAN MULDERS A, et al. Towards a functional cure for diabetes using stem cell-derived beta cells: are we there yet?[J]. Cells, 2021, 10(1): 191. DOI: 10.3390/cells10010191.
    [48] SOLTANI A, KHAZAEI S, MIRTAGHI SM, et al. Generation of high yield insulin-producing cells (IPCs) from various sources of stem cells[J]. Vitam Horm, 2021, 116: 235-268. DOI: 10.1016/bs.vh.2021.02.006.
    [49] KORYTNIKOV R, NOSTRO MC. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells[J]. Methods, 2016, 101: 56-64. DOI: 10.1016/j.ymeth.2015.10.017.
    [50] 王从义. 胰岛移植与糖尿病治疗[M]. 武汉: 华中科技大学出版社, 2019.
    [51] HALLER C, PICCAND J, DE FRANCESCHI F, et al. Macroencapsulated human iPSC-derived pancreatic progenitors protect against STZ-induced hyperglycemia in mice[J]. Stem Cell Reports, 2019, 12(4): 787-800. DOI: 10.1016/j.stemcr.2019.02.002.
    [52] NIHAD M, SHENOY PS, BOSE B. Cell therapy research for diabetes: pancreatic β cell differentiation from pluripotent stem cells[J]. Diabetes Res Clin Pract, 2021, 181: 109084. DOI: 10.1016/j.diabres.2021.109084.
    [53] ViaCyte announces initiation of phase 2 study of encapsulated cell therapy for type 1 diabetes patients[EB/OL]. (2021-02-03). https://viacyte.com/press-releases/viacyte-announces-initiation-of-phase-2-study-of-encapsulated-cell-ther-apy-for-type-1-diabetes-patients/.
    [54] CSOBONYEIOVA M, POLAK S, DANISOVIC L. Generation of pancreatic β-cells from iPSCs and their potential for type 1 diabetes mellitus replacement therapy and modelling[J]. Exp Clin Endocrinol Diabetes, 2020, 128(5): 339-346. DOI: 10.1055/a-0661-5873.
  • 加载中
图(1)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  125
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回