留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类器官在器官移植领域的应用前景

赵冰. 类器官在器官移植领域的应用前景[J]. 器官移植, 2022, 13(2): 169-175. doi: 10.3969/j.issn.1674-7445.2022.02.004
引用本文: 赵冰. 类器官在器官移植领域的应用前景[J]. 器官移植, 2022, 13(2): 169-175. doi: 10.3969/j.issn.1674-7445.2022.02.004
Zhao Bing. Application prospects of organoids in organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 169-175. doi: 10.3969/j.issn.1674-7445.2022.02.004
Citation: Zhao Bing. Application prospects of organoids in organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 169-175. doi: 10.3969/j.issn.1674-7445.2022.02.004

类器官在器官移植领域的应用前景

doi: 10.3969/j.issn.1674-7445.2022.02.004
基金项目: 

国家自然科学基金 32022022

国家重点研发计划 2018YFA0109400

详细信息
    作者简介:
    通讯作者:

    赵冰,Email:bingzhao@fudan.edu.cn

  • 中图分类号: R617, R318

Application prospects of organoids in organ transplantation

More Information
  • 摘要: 类器官技术是近年来生物医学领域最具突破性的前沿技术之一。作为组织干细胞在体外三维培养所形成的微型器官,类器官在组织结构、细胞类型和功能等方面与来源组织高度一致,为生物医学基础研究、药物研发以及临床精准医疗提供了理想模型,并在再生医学中展现出重要潜在价值。器官移植是治疗器官衰竭最有效的手段之一,但目前供者器官来源有限,无法满足患者需求,寻求合适的移植替代物是突破困境的关键。类器官可由患者自体组织构建,在多项研究中被证明具有较强的移植修复能力,且可有效规避免疫排斥反应和致瘤性等风险。本文总结了类器官技术的发展历程和主要应用方向,并就类器官在器官移植领域的应用前景和诸多挑战进行了综述和展望。

     

  • 图  1  体外构建小肠类器官示意图

    Figure  1.  Schematic diagram of in vitro construction of small intestinal organoids

    图  2  不同正常组织来源的类器官

    Figure  2.  Organoids derived from different normal tissues

    图  3  类器官技术的主要应用场景

    Figure  3.  Main application scenarios of organoid technology

  • [1] SATO T, VRIES RG, SNIPPERT HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI: 10.1038/nature07935.
    [2] SATO T, STANGE DE, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5): 1762-1772. DOI: 10.1053/j.gastro.2011.07.050.
    [3] ROSSI G, MANFRIN A, LUTOLF MP. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11): 671-687. DOI: 10.1038/s41576-018-0051-9.
    [4] XU H, LYU X, YI M, et al. Organoid technology and applications in cancer research[J]. J Hematol Oncol, 2018, 11(1): 116. DOI: 10.1186/s13045-018-0662-9.
    [5] KIM J, KOO BK, KNOBLICH JA. Human organoids: model systems for human biology and medicine[J]. Nat Rev Mol Cell Biol, 2020, 21(10): 571-584. DOI: 10.1038/s41580-020-0259-3.
    [6] KRETZSCHMAR K, CLEVERS H. Organoids: modeling development and the stem cell niche in a dish[J]. Dev Cell, 2016, 38(6): 590-600. DOI: 10.1016/j.devcel.2016.08.014.
    [7] DUTTA D, HEO I, CLEVERS H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends Mol Med, 2017, 23(5): 393-410. DOI: 10.1016/j.molmed.2017.02.007.
    [8] NUGRAHA B, BUONO MF, VON BOEHMER L, et al. Human cardiac organoids for disease modeling[J]. Clin Pharmacol Ther, 2019, 105(1): 79-85. DOI: 10.1002/cpt.1286.
    [9] LIU F, HUANG J, ZHANG L, et al. Advances in cerebral organoid systems and their application in disease modeling[J]. Neuroscience, 2019, 399: 28-38. DOI: 10.1016/j.neuroscience.2018.12.013.
    [10] DRIEHUIS E, KRETZSCHMAR K, CLEVERS H. Establishment of patient-derived cancer organoids for drug-screening applications[J]. Nat Protoc, 2020, 15(10): 3380-3409. DOI: 10.1038/s41596-020-0379-4.
    [11] BORETTO M, MAENHOUDT N, LUO X, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening[J]. Nat Cell Biol, 2019, 21(8): 1041-1051. DOI: 10.1038/s41556-019-0360-z.
    [12] KOPPER O, DE WITTE CJ, LÕHMUSSAAR K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5): 838-849. DOI: 10.1038/s41591-019-0422-6.
    [13] XIA X, LI F, HE J, et al. Organoid technology in cancer precision medicine[J]. Cancer Lett, 2019, 457: 20-27. DOI: 10.1016/j.canlet.2019.04.039.
    [14] XU R, ZHOU X, WANG S, et al. Tumor organoid models in precision medicine and investigating cancer-stromal interactions[J]. Pharmacol Ther, 2021, 218: 107668. DOI: 10.1016/j.pharmthera.2020.107668.
    [15] SERRA D, MAYR U, BONI A, et al. Self-organization and symmetry breaking in intestinal organoid development[J]. Nature, 2019, 569(7754): 66-72. DOI: 10.1038/s41586-019-1146-y.
    [16] MARSHALL JJ, MASON JO. Mouse vs man: organoid models of brain development & disease[J]. Brain Res, 2019, 1724: 146427. DOI: 10.1016/j.brainres.2019.146427.
    [17] NIKOLAEV M, MITROFANOVA O, BROGUIERE N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. DOI: 10.1038/s41586-020-2724-8.
    [18] NIGRO G, HANSON M, FEVRE C, et al. Intestinal organoids as a novel tool to study microbes-epithelium interactions[J]. Methods Mol Biol, 2019, 1576: 183-194. DOI: 10.1007/7651_2016_12.
    [19] ZHU Z, MESCI P, BERNATCHEZ JA, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin αvβ5 axis[J]. Cell Stem Cell, 2020, 26(2): 187-204. DOI: 10.1016/j.stem.2019.11.016.
    [20] MELLIN R, BODDEY JA. Organoids for liver stage malaria research[J]. Trends Parasitol, 2020, 36(2): 158-169. DOI: 10.1016/j.pt.2019.12.003.
    [21] SAKIB S, VOIGT A, GOLDSMITH T, et al. Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology[J]. Environ Epigenet, 2019, 5(3): dvz011. DOI: 10.1093/eep/dvz011.
    [22] HEDRICH WD, PANZICA-KELLY JM, CHEN SJ, et al. Development and characterization of rat duodenal organoids for ADME and toxicology applications[J]. Toxicology, 2020, 446: 152614. DOI: 10.1016/j.tox.2020.152614.
    [23] MAZZARA PG, MUGGEO S, LUONI M, et al. Frataxin gene editing rescues Friedreich's ataxia pathology in dorsal root ganglia organoid-derived sensory neurons[J]. Nat Commun, 2020, 11(1): 4178. DOI: 10.1038/s41467-020-17954-3.
    [24] HENDRIKS D, ARTEGIANI B, HU H, et al. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver[J]. Nat Protoc, 2021, 16(1): 182-217. DOI: 10.1038/s41596-020-00411-2.
    [25] ARTEGIANI B, HENDRIKS D, BEUMER J, et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing[J]. Nat Cell Biol, 2020, 22(3): 321-331. DOI: 10.1038/s41556-020-0472-5.
    [26] NAKAMURA T, SATO T. Advancing intestinal organoid technology toward regenerative medicine[J]. Cell Mol Gastroenterol Hepatol, 2017, 5(1): 51-60. DOI: 10.1016/j.jcmgh.2017.10.006.
    [27] HEO I, DUTTA D, SCHAEFER DA, et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids[J]. Nat Microbiol, 2018, 3(7): 814-823. DOI: 10.1038/s41564-018-0177-8.
    [28] ZHAO B, NI C, GAO R, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids[J]. Protein Cell, 2020, 11(10): 771-775. DOI: 10.1007/s13238-020-00718-6.
    [29] LOU YR, LEUNG AW. Next generation organoids for biomedical research and applications[J]. Biotechnol Adv, 2018, 36(1): 132-149. DOI: 10.1016/j.biotechadv.2017.10.005.
    [30] SCHUTGENS F, CLEVERS H. Human organoids: tools for understanding biology and treating diseases[J]. Annu Rev Pathol, 2020, 15: 211-234. DOI: 10.1146/annurev-pathmechdis-012419-032611.
    [31] DROST J, CLEVERS H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7): 407-418. DOI: 10.1038/s41568-018-0007-6.
    [32] ROERINK SF, SASAKI N, LEE-SIX H, et al. Intra-tumour diversification in colorectal cancer at the single-cell level[J]. Nature. 2018, 556(7702): 457-462. DOI: 10.1038/s41586-018-0024-3.
    [33] YUI S, NAKAMURA T, SATO T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell[J]. Nat Med, 2012, 18(4): 618-623. DOI: 10.1038/nm.2695.
    [34] HU H, GEHART H, ARTEGIANI B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175(6): 1591-1606. DOI: 10.1016/j.cell.2018.11.013.
    [35] SAMPAZIOTIS F, JUSTIN AW, TYSOE OC, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids[J]. Nat Med, 2017, 23(8): 954-963. DOI: 10.1038/nm.4360.
    [36] NIKOLIĆ MZ, CARITG O, JENG Q, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids[J]. Elife, 2017, 6: e26575. DOI: 10.7554/eLife.26575.
    [37] YOSHIHARA E, O'CONNOR C, GASSER E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830): 606-611. DOI: 10.1038/s41586-020-2631-z.
    [38] MANSOUR AA, GONÇALVES JT, BLOYD CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(5): 432-441. DOI: 10.1038/nbt.4127.
    [39] LEE J, RABBANI CC, GAO H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404. DOI: 10.1038/s41586-020-2352-3.
    [40] BREDENOORD AL, CLEVERS H, KNOBLICH JA. Human tissues in a dish: the research and ethical implications of organoid technology[J]. Science, 2017, 355(6322): eaaf9414. DOI: 10.1126/science.aaf9414.
    [41] LEBRETON F, LAVALLARD V, BELLOFATTO K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes[J]. Nat Commun, 2019, 10(1): 4491. DOI: 10.1038/s41467-019-12472-3.
    [42] SUGIMOTO S, KOBAYASHI E, FUJII M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome[J]. Nature, 2021, 592(7852): 99-104. DOI: 10.1038/s41586-021-03247-2.
    [43] SAMPAZIOTIS F, MURARO D, TYSOE OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver[J]. Science, 2021, 371(6531): 839-846. DOI: 10.1126/science.aaz6964.
    [44] WANG X, NI C, JIANG N, et al. Generation of liver bipotential organoids with a small-molecule cocktail[J]. J Mol Cell Biol, 2020, 12(8): 618-629. DOI: 10.1093/jmcb/mjaa010.
    [45] GIOBBE GG, CROWLEY C, LUNI C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture[J]. Nat Commun, 2019, 10(1): 5658. DOI: 10.1038/s41467-019-13605-4.
  • 加载中
图(4)
计量
  • 文章访问数:  1332
  • HTML全文浏览量:  295
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-27
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回