留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物3D打印在器官再造中的前沿热点和研究进展

黄文华. 生物3D打印在器官再造中的前沿热点和研究进展[J]. 器官移植, 2022, 13(2): 161-168. doi: 10.3969/j.issn.1674-7445.2022.02.003
引用本文: 黄文华. 生物3D打印在器官再造中的前沿热点和研究进展[J]. 器官移植, 2022, 13(2): 161-168. doi: 10.3969/j.issn.1674-7445.2022.02.003
Huang Wenhua. Frontier hotspots and research progress on 3D bioprinting in organ reconstruction[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 161-168. doi: 10.3969/j.issn.1674-7445.2022.02.003
Citation: Huang Wenhua. Frontier hotspots and research progress on 3D bioprinting in organ reconstruction[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 161-168. doi: 10.3969/j.issn.1674-7445.2022.02.003

生物3D打印在器官再造中的前沿热点和研究进展

doi: 10.3969/j.issn.1674-7445.2022.02.003
基金项目: 

国家自然科学基金 21773199

国家自然科学基金 31972915

广东省基础与应用基础研究基金 2020B1515120001

深圳市医疗卫生“三名工程”高层次医学团队 SZSM201612019

详细信息
    作者简介:
    通讯作者:

    黄文华,Email:huangwenhua2009@139.com

  • 中图分类号: R617, R318.1

Frontier hotspots and research progress on 3D bioprinting in organ reconstruction

More Information
  • 摘要: 生物3D打印是采用生物材料和生物活性成分制作人工组织器官的新兴制造技术,已在多个医学领域广泛应用,在器官再造领域也具有突出的优势。近年来,生物3D打印器官取得了一系列重要突破,但目前仍处在研发和探索阶段,存在较多瓶颈,尚还不能用于体内移植。本文主要就3D打印技术的医学应用,生物3D打印技术的特点,生物3D打印器官在仿生结构、功能重建、免疫反应等方面的研究热点和难点,以及生物3D打印的最新研究进展,阐述生物3D打印技术在器官再造领域的应用前景,为器官重建、人工器官构建的研究及其临床应用提供新思路,以推动器官移植和个性化医疗的发展。

     

  • [1] JORGENSEN AM, YOO JJ, ATALA A. Solid organ bioprinting: strategies to achieve organ function[J]. Chem Rev, 2020, 120(19): 11093-11127. DOI: 10.1021/acs.chemrev.0c00145.
    [2] JIANG W, MEI H, ZHAO S. Applications of 3D bio-printing in tissue engineering and biomedicine[J]. J Biomed Nanotechnol, 2021, 17(6): 989-1006. DOI: 10.1166/jbn.2021.3078.
    [3] PARIHAR A, PANDITA V, KUMAR A, et al. 3D printing: advancement in biogenerative engineering to combat shortage of organs and bioapplicable materials[J]. Regen Eng Transl Med, 2021, DOI: 10.1007/s40883-021-00219-w [Epub ahead of print].
    [4] POWELL SK, CRUZ RLJ, ROSS MT, et al. Past, present, and future of soft-tissue prosthetics: advanced polymers and advanced manufacturing[J]. Adv Mater, 2020, 32(42): e2001122. DOI: 10.1002/adma.202001122.
    [5] ZHANG J, WEHRLE E, RUBERT M, et al. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors[J]. Int J Mol Sci, 2021, 22(8): 3971. DOI: 10.3390/ijms22083971.
    [6] ZASZCZYŃSKA A, MOCZULSKA-HELJAK M, GRADYS A, et al. Advances in 3D printing for tissue engineering[J]. Materials (Basel), 2021, 14(12): 3149. DOI: 10.3390/ma14123149.
    [7] KAFLE A, LUIS E, SILWAL R, et al. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA)[J]. Polymers (Basel), 2021, 13(18): 3101. DOI: 10.3390/polym13183101.
    [8] GRAJEWSKI M, HERMANN M, OLESCHUK RD, et al. Leveraging 3D printing to enhance mass spectrometry: a review[J]. Anal Chim Acta, 2021, 1166: 338332. DOI: 10.1016/j.aca.2021.338332.
    [9] PUTRA NE, MIRZAALI MJ, APACHITEI I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution[J]. Acta Biomater, 2020, 109: 1-20. DOI: 10.1016/j.actbio.2020.03.037.
    [10] 李金泰, 蓝升, 刘毅. 3D打印干细胞技术用于组织器官重建的现状与思考[J]. 器官移植, 2017, 8(4): 267-270. DOI: 10.3969/j.issn.1674-7445.2017.04.003.

    LI JT, LAN S, LIU Y. Current status and thinking of 3D printing stem cell technology for tissue and organ reconstruction[J]. Organ Transplant, 2017, 8(4): 267-270. DOI: 10.3969/j.issn.1674-7445.2017.04.003.
    [11] PEDDE RD, MIRANI B, NAVAEI A, et al. Emerging biofabrication strategies for engineering complex tissue constructs[J]. Adv Mater, 2017, 29(19): 1-27. DOI: 10.1002/adma.201606061.
    [12] RAVANBAKHSH H, KARAMZADEH V, BAO G, et al. Emerging technologies in multi-material bioprinting[J]. Adv Mater, 2021, DOI: 10.1002/adma.202104730[Epub ahead of print].
    [13] ZHOU G, JIANG H, YIN Z, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction[J]. EBioMedicine, 2018, 28: 287-302. DOI: 10.1016/j.ebiom.2018.01.011.
    [14] NOOR N, SHAPIRA A, EDRI R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Adv Sci (Weinh), 2019, 6(11): 1900344. DOI: 10.1002/advs.201900344.
    [15] JALLERAT Q, FEINBERG AW. Extracellular matrix structure and composition in the early four-chambered embryonic heart[J]. Cells, 2020, 9(2): 285. DOI: 10.3390/cells9020285.
    [16] GRIGORYAN B, PAULSEN SJ, CORBETT DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439): 458-464. DOI: 10.1126/science.aav9750.
    [17] RAMASWAMY A, BRODSKY NN, SUMIDA TS, et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children[J]. Immunity, 2021, 54(5): 1083-1095. DOI: 10.1016/j.immuni.2021.04.003.
    [18] ALIMI OA, MEIJBOOM R. Current and future trends of additive manufacturing for chemistry applications: a review[J]. J Mater Sci, 2021: 1-27. DOI: 10.1007/s10853-021-06362-7.
    [19] ZADPOOR AA. Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials[J]. Int J Mol Sci, 2017, 18(8): 1607. DOI: 10.3390/ijms18081607.
    [20] ANTMEN E, VRANA NE, HASIRCI V. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures[J]. Biomater Sci, 2021, 9(24): 8090-8110. DOI: 10.1039/d1bm00840d.
    [21] AMEKYEH H, TARLOCHAN F, BILLA N. Practicality of 3D printed personalized medicines in therapeutics[J]. Front Pharmacol, 2021, 12: 646836. DOI: 10.3389/fphar.2021.646836.
    [22] GUILLOTIN B, SOUQUET A, CATROS S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization[J]. Biomaterials, 2010, 31(28): 7250-7256. DOI: 10.1016/j.biomaterials.2010.05.055.
    [23] HULL SM, BRUNEL LG, HEILSHORN SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality[J]. Adv Mater, 2021: e2103691. DOI: 10.1002/adma.202103691.
    [24] CARVALHO V, GONÇALVES I, LAGE T, et al. 3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review[J]. Sensors (Basel), 2021, 21(9): 3304. DOI: 10.3390/s21093304.
    [25] ZOHAR B, BLINDER Y, EPSHTEIN M, et al. Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue[J]. Commun Biol, 2019, 2: 158. DOI: 10.1038/s42003-019-0400-z.
    [26] YAMAMOTO K, YAMAOKA N, IMAIZUMI Y, et al. Development of a human neuromuscular tissue-on-a-chip model on a 24-well-plate-format compartmentalized microfluidic device[J]. Lab Chip, 2021, 21(10): 1897-1907. DOI: 10.1039/d1lc00048a.
    [27] LIND JU, BUSBEE TA, VALENTINE AD, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J]. Nat Mater, 2017, 16(3): 303-308. DOI: 10.1038/nmat4782.
    [28] CHEN X, LIAN T, ZHANG B, et al. Design and mechanical compatibility of nylon bionic cancellous bone fabricated by selective laser sintering[J]. Materials (Basel), 2021, 14(8): 1965. DOI: 10.3390/ma14081965.
    [29] PAGAC M, HAJNYS J, MA QP, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing[J]. Polymers (Basel), 2021, 13(4): 598. DOI: 10.3390/polym13040598.
    [30] ZHOU X, REN L, LIU Q, et al. Advances in field-assisted 3D printing of bio-inspired composites: from bioprototyping to manufacturing[J]. Macromol Biosci, 2021: e2100332. DOI: 10.1002/mabi.202100332.
    [31] MAO M, LIANG H, HE J, et al. Coaxial electrohydrodynamic bioprinting of pre-vascularized cell-laden constructs for tissue engineering[J]. Int J Bioprint, 2021, 7(3): 362. DOI: 10.18063/ijb.v7i3.362.
    [32] WU Y, ZHANG Y, YU Y, et al. 3D coaxial bioprinting of vasculature[J]. Methods Mol Biol, 2020, 2140: 171-181. DOI: 10.1007/978-1-0716-0520-2_11.
    [33] LI C, HAN X, MA Z, et al. Engineered customizable microvessels for progressive vascularization in large regenerative implants[J]. Adv Healthc Mater, 2021: e2101836. DOI: 10.1002/adhm.202101836.
    [34] DE MOOR L, SMET J, PLOVYT M, et al. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin[J]. Biofabrication, 2021, 13(4). DOI: 10.1088/1758-5090/ac24de.
    [35] ZHONG C, XIE HY, ZHOU L, et al. Human hepatocytes loaded in 3D bioprinting generate mini-liver[J]. Hepatobiliary Pancreat Dis Int, 2016, 15(5): 512-518. DOI: 10.1016/s1499-3872(16)60119-4.
    [36] NIKOLAEV M, MITROFANOVA O, BROGUIERE N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. DOI: 10.1038/s41586-020-2724-8.
    [37] 马军, 贺强, 李先亮. 器官移植受者免疫状态监测最新进展[J]. 器官移植, 2019, 10(3): 333-335, 338. DOI: 10.3969/j.issn.1674-7445.2019.03.019.

    MA J, HE Q, LI XL. The latest progress on monitoring the immune status of organ transplant recipients[J]. Organ Transplant, 2019, 10(3): 333-335, 338. DOI: 10.3969/j.issn.1674-7445.2019.03.019.
    [38] 肖漓, 解立新, 石炳毅. 肺移植免疫学相关基础与临床研究进展[J]. 器官移植, 2021, 12(6): 637-642. DOI: 10.3969/j.issn.1674-7445.2021.06.001.

    XIAO L, XIE LX, SHI BY. Progress on basic and clinical research of immunology in lung transplantation[J]. Organ Transplant, 2021, 12(6): 637-642. DOI: 10.3969/j.issn.1674-7445.2021.06.001.
    [39] EDGAR L, PU T, PORTER B, et al. Regenerative medicine, organ bioengineering and transplantation[J]. Br J Surg, 2020, 107(7): 793-800. DOI: 10.1002/bjs.11686.
    [40] KUNG VL, SANDHU R, HAAS M, et al. Chronic active T cell-mediated rejection is variably responsive to immunosuppressive therapy[J]. Kidney Int, 2021, 100(2): 391-400. DOI: 10.1016/j.kint.2021.03.027.
    [41] MA S, FENG X, LIU F, et al. The pro-inflammatory response of macrophages regulated by acid degradation products of poly(lactide-co-glycolide) nanoparticles[J]. Eng Life Sci, 2021, 21(10): 709-720. DOI: 10.1002/elsc.202100040.
    [42] CALDWELL AS, RAO VV, GOLDEN AC, et al. Mesenchymal stem cell-inspired microgel scaffolds to control macrophage polarization[J]. Bioeng Transl Med, 2021, 6(2): e10217. DOI: 10.1002/btm2.10217.
    [43] LIU W, LIANG L, LIU B, et al. The response of macrophages and their osteogenic potential modulated by micro/nano-structured Ti surfaces[J]. Colloids Surf B Biointerfaces, 2021, 205: 111848. DOI: 10.1016/j.colsurfb.2021.111848.
    [44] 徐俊明, 周林, 贺强. 树突状细胞在器官移植免疫耐受中的研究进展[J]. 器官移植, 2020, 11(5): 629-634. DOI: 10.3969/j.issn.1674-7445.2020.05.017.

    XU JM, ZHOU L, HE Q. Research progress on dendritic cell in immune tolerance of organ transplantation[J]. Organ Transplant, 2020, 11(5): 629-634. DOI: 10.3969/j.issn.1674-7445.2020.05.017.
    [45] 袁顺, 王志维. 髓源性抑制细胞与移植免疫耐受研究进展[J]. 器官移植, 2020, 11(4): 435-442. DOI: 10.3969/j.issn.1674-7445.2020.04.002.

    YUAN S, WANG ZW. Research progress on myeloid-derived suppressorcell and transplantation immune tolerance[J]. Organ Transplant, 2020, 11(4): 435-442. DOI: 10.3969/j.issn.1674-7445.2020.04.002.
  • 加载中
图(1)
计量
  • 文章访问数:  838
  • HTML全文浏览量:  266
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回