留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外周血淋巴细胞亚群绝对值和功能的动态监测在肾移植术后早期病毒感染风险预测中的价值

张倩倩 谢亚龙 汪峰 罗颖 陈松 张伟杰 昌盛

张倩倩, 谢亚龙, 汪峰, 等. 外周血淋巴细胞亚群绝对值和功能的动态监测在肾移植术后早期病毒感染风险预测中的价值[J]. 器官移植, 2022, 13(1): 80-87. doi: 10.3969/j.issn.1674-7445.2022.01.013
引用本文: 张倩倩, 谢亚龙, 汪峰, 等. 外周血淋巴细胞亚群绝对值和功能的动态监测在肾移植术后早期病毒感染风险预测中的价值[J]. 器官移植, 2022, 13(1): 80-87. doi: 10.3969/j.issn.1674-7445.2022.01.013
Zhang Qianqian, Xie Yalong, Wang Feng, et al. Value of dynamic monitoring of absolute value and function of peripheral blood lymphocyte subsets in predicting the risk of early viral infection after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 80-87. doi: 10.3969/j.issn.1674-7445.2022.01.013
Citation: Zhang Qianqian, Xie Yalong, Wang Feng, et al. Value of dynamic monitoring of absolute value and function of peripheral blood lymphocyte subsets in predicting the risk of early viral infection after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 80-87. doi: 10.3969/j.issn.1674-7445.2022.01.013

外周血淋巴细胞亚群绝对值和功能的动态监测在肾移植术后早期病毒感染风险预测中的价值

doi: 10.3969/j.issn.1674-7445.2022.01.013
基金项目: 

国家自然科学基金面上项目 81873511

中国器官移植发展基金会“移植领创计划” YZLC-2021-005

湖北省卫生计生科研项目 WJ2019Z007

详细信息
    作者简介:

    张倩倩,女,1994年生,硕士,住院医师,研究方向为器官移植与免疫,Email:QianqianAhaha@163.com

    通讯作者:

    昌盛,男,1973年生,博士,主任医师,研究方向为器官移植与免疫,Email:changsheng@hust.edu.cn

  • 中图分类号: R617, R619+.3

Value of dynamic monitoring of absolute value and function of peripheral blood lymphocyte subsets in predicting the risk of early viral infection after kidney transplantation

More Information
  • 摘要:   目的  探讨不同淋巴细胞亚群的绝对值和功能对于评估肾移植受者术后早期发生病毒感染风险的预测和诊断价值。  方法  将95例肾移植受者纳入前瞻性观察队列研究,根据术后的免疫状态分为稳定组(77例)和感染组(18例)。分别于术前、术后2周、术后1个月、术后2个月、术后6个月采集外周血样本进行流式细胞检测。比较两组CD4+T细胞、CD8+T细胞、自然杀伤(NK)细胞绝对值的动态变化,通过检测干扰素(IFN)-γ+CD4+T细胞、IFN-γ+CD8+T细胞、IFN-γ+NK细胞比例分析两组受者淋巴细胞亚群功能,评估淋巴细胞亚群绝对值和功能在肾移植术后早期对病毒感染的预测和诊断价值。  结果  在病毒感染时,感染组的CD4+T细胞、CD8+T细胞、NK细胞绝对值整体处于相对较低的水平;在术后2个月时,感染组的CD4+T细胞、NK细胞绝对值均低于稳定组;在术后6个月时,感染组的CD4+T细胞、CD8+T细胞绝对值均低于稳定组(均为P < 0.05)。在病毒感染时,感染组的IFN-γ+CD4+T细胞、IFN-γ+CD8+T细胞、IFN-γ+NK细胞比例均处于相对较低的水平,尤以IFN-γ+CD8+T细胞比例降低最为显著;在术后2个月,感染组的IFN-γ+CD8+T细胞、IFN-γ+NK细胞比例显著高于稳定组;在术后6个月,感染组的IFN-γ+CD4+T细胞、IFN-γ+CD8+T细胞比例均高于稳定组(均为P < 0.05)。logistic回归分析结果显示,术后2个月时,IFN-γ+CD8+T细胞和IFN-γ+NK细胞比例的升高与病毒感染风险增加均相关(均为P < 0.05)。受试者工作特征(ROC)曲线结果表明,淋巴细胞亚群绝对值联合其IFN-γ分泌功能对于免疫状态低下的受者病毒感染的诊断价值显著高于单用淋巴细胞亚群绝对值(P < 0.05)。  结论  动态监测淋巴细胞亚群绝对值和功能的变化对病毒感染的预测、诊断及指导用药具有重要参考价值。

     

  • 图  1  稳定组和感染组肾移植受者淋巴细胞亚群绝对值的比较

    注:图中数据以中位数表示。与术前比较,aP < 0.05/10;与术后2周比较,bP < 0.05/10;与术后1个月比较,cP < 0.05/10;与术后2个月比较,dP < 0.05/10;与感染时比较,eP < 0.05/10;与稳定组比较,*P < 0.05。

    Figure  1.  Comparison of absolute values of lymphocyte subsets in kidney transplant recipients of stable and infected groups

    图  2  稳定组和感染组肾移植受者淋巴细胞亚群功能的比较

    注:图中数据以中位数表示。与术前比较,aP < 0.05/10;与术后2周比较,bP < 0.05/10;与术后1个月比较,cP < 0.05/10;与术后2个月比较,dP < 0.05/10;与感染时比较,eP < 0.05/10;与稳定组比较,*P < 0.05。

    Figure  2.  Comparison of function of lymphocyte subsets in kidney transplant recipients of stable and infected groups

    图  3  淋巴细胞亚群绝对值和功能预测病毒感染的logistic回归分析

    Figure  3.  Logistic regression analysis of absolute values and function of lymphocyte subsets to predict viral infection

    图  4  淋巴细胞亚群绝对值和功能诊断肾移植受者病毒感染的ROC曲线

    注:A图示单个不同指标诊断肾移植受者病毒感染的ROC曲线;B图示淋巴细胞亚群绝对值或功能诊断肾移植受者病毒感染的ROC曲线;C图示淋巴细胞亚群绝对值联合其功能诊断肾移植受者病毒感染的ROC曲线。

    Figure  4.  ROC curves of absolute values and function of lymphocyte subsets in diagnosing viral infection in kidney transplant recipients

  • [1] SHIPKOVA M, WIELAND E. Editorial: immune monitoring in solid organ transplantation[J]. Clin Biochem, 2016, 49(4/5): 317-319. DOI: 10.1016/j.clinbiochem.2016.01.005.
    [2] YU M, LIU M, ZHANG W, et al. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation[J]. Curr Drug Metab, 2018, 19(6): 513-522. DOI: 10.2174/1389200219666180129151948.
    [3] ZHUANG Q, PENG B, WEI W, et al. The detailed distribution of T cell subpopulations in immune-stable renal allograft recipients: a single center study[J]. PeerJ, 2019, 7: e6417. DOI: 10.7717/peerj.6417.
    [4] CHAE MS, KIM JW, CHUNG HS, et al. The impact of serum cytokines in the development of early allograft dysfunction in living donor liver transplantation[J]. Medicine (Baltimore), 2018, 97(16): e0400. DOI: 10.1097/MD.0000000000010400.
    [5] MARGETA I, MAREKOVIĆ I, PEŠUT A, et al. Evaluation of cell-mediated immune response by quantiFERON monitor assay in kidney transplant recipients presenting with infective complications[J]. Medicine (Baltimore), 2020, 99(27): e21010. DOI: 10.1097/MD.0000000000021010.
    [6] LEE DM, ABECASSIS MM, FRIEDEWALD JJ, et al. Kidney graft surveillance biopsy utilization and trends: results from a survey of high-volume transplant centers[J]. Transplant Proc, 2020, 52(10): 3085-3089. DOI: 10.1016/j.transproceed.2020.04.1816.
    [7] PLATTNER BW, CHEN P, CROSS R, et al. Complications and adequacy of transplant kidney biopsies: a comparison of techniques[J]. J Vasc Access, 2018, 19(3): 291-296. DOI: 10.1177/1129729817747543.
    [8] ALSPACH E, LUSSIER DM, SCHREIBER RD. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity[J]. Cold Spring Harb Perspect Biol, 2019, 11(3): a028480. DOI: 10.1101/cshperspect.a028480.
    [9] FARHOOD B, NAJAFI M, MORTEZAEE K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review[J]. J Cell Physiol, 2019, 234(6): 8509-8521. DOI: 10.1002/jcp.27782.
    [10] SHIU KY, MCLAUGHLIN L, REBOLLO-MESA I, et al. Graft dysfunction in chronic antibody-mediated rejection correlates with B-cell-dependent indirect antidonor alloresponses and autocrine regulation of interferon-γ production by Th1 cells[J]. Kidney Int, 2017, 91(2): 477-492. DOI: 10.1016/j.kint.2016.10.009.
    [11] CRESPO E, CRAVEDI P, MARTORELL J, et al. Posttransplant peripheral blood donor-specific interferon-γ enzyme-linked immune spot assay differentiates risk of subclinical rejection and de novo donor-specific alloantibodies in kidney transplant recipients[J]. Kidney Int, 2017, 92(1): 201-213. DOI: 10.1016/j.kint.2016.12.024.
    [12] KIM T, LEE HJ, KIM SM, et al. Diagnostic usefulness of the cytomegalovirus (CMV)-specific T cell-based assay for predicting CMV infection after kidney transplant[J]. Korean J Intern Med, 2020, 35(2): 438-448. DOI: 10.3904/kjim.2017.318.
    [13] KRISNAWATI DI, LIU YC, LEE YJ, et al. Blockade effects of anti-interferon- (IFN-) γ autoantibodies on IFN-γ-regulated antimicrobial immunity[J]. J Immunol Res, 2019: 1629258. DOI: 10.1155/2019/1629258.
    [14] HOU H, ZHOU Y, YU J, et al. Establishment of the reference intervals of lymphocyte function in healthy adults based on IFN-γ secretion assay upon phorbol-12-myristate-13-acetate/ionomycin stimulation[J]. Front Immunol, 2018, 9: 172. DOI: 10.3389/fimmu.2018.00172.
    [15] LUO Y, XIE Y, ZHANG W, et al. Combination of lymphocyte number and function in evaluating host immunity[J]. Aging (Albany NY), 2019, 11(24): 12685-12707. DOI: 10.18632/aging.102595.
    [16] WIEBE C, KOSMOLIAPTSIS V, POCHINCO D, et al. HLA-DR/DQ molecular mismatch: a prognostic biomarker for primary alloimmunity[J]. Am J Transplant, 2019, 19(6): 1708-1719. DOI: 10.1111/ajt.15177.
    [17] ISRAELI M, KLEIN T, BRANDHORST G, et al. Confronting the challenge: individualized immune monitoring after organ transplantation using the cellular immune function assay[J]. Clin Chim Acta, 2012, 413(17/18): 1374-1378. DOI: 10.1016/j.cca.2012.01.033.
    [18] REZAHOSSEINI O, MØLLER DL, KNUDSEN AD, et al. Use of T cell mediated immune functional assays for adjustment of immunosuppressive or anti-infective agents in solid organ transplant recipients: a systematic review[J]. Front Immunol, 2020, 11: 567715. DOI: 10.3389/fimmu.2020.567715.
    [19] HARTMANN FJ, BABDOR J, GHERARDINI PF, et al. Comprehensive immune monitoring of clinical trials to advance human immunotherapy[J]. Cell Rep, 2019, 28(3): 819-831. DOI: 10.1016/j.celrep.2019.06.049.
    [20] PENG B, GONG H, TIAN H, et al. The study of the association between immune monitoring and pneumonia in kidney transplant recipients through machine learning models[J]. J Transl Med, 2020, 18(1): 370. DOI: 10.1186/s12967-020-02542-2.
    [21] UDOMKARNJANANUN S, KERR SJ, TOWNAMCHAI N, et al. Donor-specific ELISPOT assay for predicting acute rejection and allograft function after kidney transplantation: a systematic review and Meta-analysis[J]. Clin Biochem, 2021, 94: 1-11. DOI: 10.1016/j.clinbiochem.2021.04.011.
    [22] 毛天赐, 田普训, 薛武军, 等. 分泌干扰素-γ的效应T细胞在预警肾移植术后急性排斥反应中的意义[J]. 器官移植, 2013, 4(6): 325-330. DOI: 10.3969/j.issn.1674-7445.2013.06.004.

    MAO TC, TIAN PX, XUE WJ, et al. Significance of effector T cell secreting interferon-γ on early warning of acute rejection after renal transplantation[J]. Organ Transplant, 2013, 4(6): 325-330. DOI: 10.3969/j.issn.1674-7445.2013.06.004.
    [23] SALDAN A, FORNER G, MENGOLI C, et al. Comparison of the cytomegalovirus (CMV) enzyme-linked immunosorbent spot and CMV quantiFERON cell-mediated immune assays in CMV-seropositive and -seronegative pregnant and nonpregnant women[J]. J Clin Microbiol, 2016, 54(5): 1352-1356. DOI: 10.1128/JCM.03128-15.
    [24] ATLANI M, SHARMA RK, GUPTA A. Basiliximab induction in renal transplantation: long-term outcome[J]. Saudi J Kidney Dis Transpl, 2013, 24(3): 473-479. DOI: 10.4103/1319-2442.111010.
    [25] HOU X, LU C, CHEN S, et al. High throughput sequencing of T cell antigen receptors reveals a conserved TCR repertoire[J]. Medicine (Baltimore), 2016, 95(10): e2839. DOI: 10.1097/MD.0000000000002839.
    [26] GILL RG, BURRACK AL. Diverse routes of allograft tolerance disruption by memory T cells[J]. Front Immunol, 2020, 11: 580483. DOI: 10.3389/fimmu.2020.580483.
    [27] LEE SJ, KIM HJ, BYUN NR, et al. Donor-specific regulatory T cell-mediated immune tolerance in an intrahepatic murine allogeneic islet transplantation model with short-term anti-CD154 mAb single treatment[J]. Cell Transplant, 2020, 29: 963689720913876. DOI: 10.1177/0963689720913876.
    [28] PATHAK S, MEYER EH. Tregs and mixed chimerism as approaches for tolerance induction in islet transplantation[J]. Front Immunol, 2021, 11: 612737. DOI: 10.3389/fimmu.2020.612737.
    [29] HIGDON LE, TROFE-CLARK J, LIU S, et al. Cytomegalovirus-responsive CD8+ T cells expand after solid organ transplantation in the absence of CMV disease[J]. Am J Transplant, 2017, 17(8): 2045-2054. DOI: 10.1111/ajt.14227.
    [30] BETJES MGH, LANGERAK AW, KLEPPER M, et al. A very low thymus function identifies patients with substantial increased risk for long-term mortality after kidney transplantation[J]. Immun Ageing, 2020, 17: 4. DOI: 10.1186/s12979-020-00175-z.
    [31] CHEN D, ZHAO R, CAO W, et al. Clinical characteristics of cytomegalovirus gastritis: a retrospective study from a tertiary medical center[J]. Medicine (Baltimore), 2020, 99(5): e18927. DOI: 10.1097/MD.0000000000018927.
    [32] FERREIRA VH, KUMAR D, HUMAR A. Deep profiling of the CD8+ T-cell compartment identifies activated cell subsets and multifunctional responses associated with control of cytomegalovirus viremia[J]. Transplantation, 2019, 103(3): 613-621. DOI: 10.1097/TP.0000000000002373.
    [33] DENDLE C, MULLEY WR, HOLDSWORTH S. Can immune biomarkers predict infections in solid organ transplant recipients? a review of current evidence[J]. Transplant Rev (Orlando), 2019, 33(2): 87-98. DOI: 10.1016/j.trre.2018.10.001.
    [34] DRABE CH, SØRENSEN SS, RASMUSSEN A, et al. Immune function as predictor of infectious complications and clinical outcome in patients undergoing solid organ transplantation (the ImmuneMo: SOT study): a prospective non-interventional observational trial[J]. BMC Infect Dis, 2019, 19(1): 573. DOI: 10.1186/s12879-019-4207-9.
  • 加载中
图(5)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  197
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-25
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回