留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年肾移植临床国际前沿热点及新进展荟萃

邵琨 王祥慧

邵琨, 王祥慧. 2020年肾移植临床国际前沿热点及新进展荟萃[J]. 器官移植, 2021, 12(2): 155-168. doi: 10.3969/j.issn.1674-7445.2021.02.005
引用本文: 邵琨, 王祥慧. 2020年肾移植临床国际前沿热点及新进展荟萃[J]. 器官移植, 2021, 12(2): 155-168. doi: 10.3969/j.issn.1674-7445.2021.02.005
Shao kun, Wang Xianghui. Highlights of international frontier hot spots and new progress on renal transplantation in 2020[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 155-168. doi: 10.3969/j.issn.1674-7445.2021.02.005
Citation: Shao kun, Wang Xianghui. Highlights of international frontier hot spots and new progress on renal transplantation in 2020[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 155-168. doi: 10.3969/j.issn.1674-7445.2021.02.005

2020年肾移植临床国际前沿热点及新进展荟萃

doi: 10.3969/j.issn.1674-7445.2021.02.005
基金项目: 

上海市科委基金项目 10DZ2212000

详细信息
    作者简介:

    邵琨,男,博士,Email: shaokun_true@hotmail.com

    通讯作者:

    王祥慧,博士,主任医师,教授,博士研究生导师,E-mail: wxh@medmail.com.cn

  • 中图分类号: R617

Highlights of international frontier hot spots and new progress on renal transplantation in 2020

More Information
  • 摘要: 在浩瀚的肾移植相关文献中, 本文汲取和盘点2020年肾移植临床国际前沿热点和难点, 移植新技术、新方法、新视野及新进展荟萃, 主要内容包括排斥反应, 免疫抑制优化应用与调控, 移植感染, 移植后恶性肿瘤, 无创检测与生物标志物, 供者器官保存、修复及利用, 肾移植术后肾病复发, 多因素影响移植肾长期存活, 计算机与人工智能等。加强对肾移植领域文献的阅读与思考, 站在更高的起点开拓视野, 结合中国肾移植临床实践, 以推动肾移植获得更好的长期效果。

     

  • [1] SELLARÉS J, DE FREITAS DG, MENGEL M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence[J]. Am J Transplant, 2012, 12(2): 388-399. DOI: 10.1111/j.1600-6143.2011.03840.x.
    [2] TAMBUR AR, CAMPBELL P, CHONG AS, et al. Sensitization in transplantation: assessment of risk (STAR)2019 working group meeting report[J]. Am J Transplant, 2020, 20(10): 2652-2668. DOI: 10.1111/ajt.15937.
    [3] NICKERSON PW. What have we learned about how to prevent and treat antibody-mediated rejection in kidney transplantation?[J]. Am J Transplant, 2020, 20(Suppl 4): 12-22. DOI: 10.1111/ajt.15859.
    [4] JAIN D, RAJAB A, YOUNG JS, et al. Reversing donorspecific antibody responses and antibody-mediated rejection with bortezomib and belatacept in mice and kidney transplant recipients[J]. Am J Transplant, 2020, 20(10): 2675-2685. DOI: 10.1111/ajt.15881.
    [5] JORDAN SC, AMMERMAN N, CHOI J, et al. The role of novel therapeutic approaches for prevention of allosensitization and antibody-mediated rejection[J]. Am J Transplant, 2020, 20(Suppl 4): 42-56. DOI: 10.1111/ajt.15913.
    [6] CHONG AS. Mechanisms of organ transplant injury mediated by B cells and antibodies: implications for antibody-mediated rejection[J]. Am J Transplant, 2020, 20(Suppl 4): 23-32. DOI: 10.1111/ajt.15844.
    [7] LOUIS K, MACEDO C, BAILLY E, et al. Coordinated circulating T follicular helper and activated B cell responses underlie the onset of antibody-mediated rejection in kidney transplantation[J]. J Am Soc Nephrol, 2020, 31(10): 2457-2474. DOI: 10.1681/ASN.2020030320.
    [8] SAKAMOTO S, IWASAKI K, TOMOSUGI T, et al. Analysis of T and B cell epitopes to predict the risk of de novo donor-specific antibody (DSA) production after kidney transplantation: a two-center retrospective cohort study[J]. Front Immunol, 2020, 11: 2000. DOI: 10.3389/fimmu.2020.02000.
    [9] SENEV A, LERUT E, VAN SANDT V, et al. Specificity, strength, and evolution of pretransplant donor-specific HLA antibodies determine outcome after kidney transplantation[J]. Am J Transplant, 2019, 19(11): 3100-3113. DOI: 10.1111/ajt.15414.
    [10] GE S, CHU M, CHOI J, et al. Imlifidase inhibits HLA antibody-mediated NK cell activation and antibodydependent cell-mediated cytotoxicity (ADCC) in vitro[J]. Transplantation, 2020, 104(8): 1574-1579. DOI: 10.1097/TP.0000000000003023.
    [11] MARKS WH, MAMODE N, MONTGOMERY RA, et al. Safety and efficacy of eculizumab in the prevention of antibody-mediated rejection in living-donor kidney transplant recipients requiring desensitization therapy: a randomized trial[J]. Am J Transplant, 2019, 19(10): 2876-2888. DOI: 10.1111/ajt.15364.
    [12] GLOTZ D, RUSS G, ROSTAING L, et al. Safety and efficacy of eculizumab for the prevention of antibodymediated rejection after deceased-donor kidney transplantation in patients with preformed donor-specific antibodies[J]. Am J Transplant, 2019, 19(10): 2865-2875. DOI: 10.1111/ajt.15397.
    [13] TAN EK, BENTALL A, DEAN PG, et al. Use of eculizumab for active antibody-mediated rejection that occurs early post-kidney transplantation: a consecutive series of 15 cases[J]. Transplantation, 2019, 103(11): 2397-2404. DOI: 10.1097/TP.0000000000002639.
    [14] LAVACCA A, PRESTA R, GAI C, et al. Early effects of first-line treatment with anti-interleukin-6 receptor antibody tocilizumab for chronic active antibodymediated rejection in kidney transplantation[J]. Clin Transplant, 2020, 34(8): e13908. DOI: 10.1111/ctr.13908.
    [15] SHIN BH, EVERLY MJ, ZHANG H, et al. Impact of tocilizumab (anti-IL-6R) treatment on immunoglobulins and anti-HLA antibodies in kidney transplant patients with chronic antibody-mediated rejection[J]. Transplantation, 2020, 104(4): 856-863. DOI: 10.1097/TP.0000000000002895.
    [16] KWUN J, KNECHTLE S. Experimental modeling of desensitization: what have we learned about preventing AMR?[J]. Am J Transplant, 2020, 20(Suppl 4): 2-11. DOI: 10.1111/ajt.15873.
    [17] DOBERER K, KLÄGER J, GUALDONI GA, et al. CD38 antibody daratumumab for the treatment of chronic active antibody-mediated kidney allograft rejection[J]. Transplantation, 2021, 105(2): 451-457. DOI: 10.1097/TP.0000000000003247.
    [18] CUCCHIARI D, MOLINA-ANDUJAR A, MONTAGUDMARRAHI E, et al. Use of de novo mTOR inhibitors in hypersensitized kidney transplant recipients: experience from clinical practice[J]. Transplantation, 2020, 104(8): 1686-1694. DOI: 10.1097/TP.0000000000003021.
    [19] SCHINSTOCK CA, MANNON RB, BUDDE K, et al. Recommended treatment for antibody-mediated rejection after kidney transplantation: the 2019 expert consensus from The Transplantion Society Working Group[J]. Transplantation, 2020, 104(5): 911-922. DOI: 10.1097/TP.0000000000003095.
    [20] OSSMAN R, JAMME M, MOULIN B, et al. Immunosuppression and graft rejection in living-related HLA-identical renal transplantation: the RADOVFULL study[J]. Transplantation, 2020, 104(6): 1256-1262. DOI: 10.1097/TP.0000000000002937.
    [21] SAWITZKI B, HARDEN PN, REINKE P, et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials[J]. Lancet, 2020, 395(10237): 1627-1639. DOI: 10.1016/S0140-6736(20)30167-7.
    [22] ROEMHILD A, OTTO NM, MOLL G, et al. Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial[J]. BMJ, 2020, 371: m3734. DOI: 10.1136/bmj.m3734.
    [23] LEE KW, PARK JB, PARK H, et al. Inducing transient mixed chimerism for allograft survival without maintenance immunosuppression with combined kidney and bone marrow transplantation: protocol optimization[J]. Transplantation, 2020, 104(7): 1472-1482. DOI: 10.1097/TP.0000000000003006.
    [24] PHAM C, KUTEN SA, KNIGHT RJ, et al. Assessment of infectious complications in elderly kidney transplant recipients receiving induction with anti-thymocyte globulin vs basiliximab[J]. Transpl Infect Dis, 2020, 22(3): e13257. DOI: 10.1111/tid.13257.
    [25] ELHELOU G, RAZONABLE R. Next-generation sequencing to assess cytomegalovirus viral populations during the course of CMV infection[J]. Am J Transplant, 2020, 20(Suppl 3): 793.
    [26] MALONEY E, TOH J, KRAMS SM, et al. Genomewide analysis of epstein barr virus identifies variations in the latency gene EBNA3C that are associated with post transplant lymphoproliferative disorder[J]. Am J Transplant, 2020, 20(Suppl 3): 295.
    [27] RODRIGUEZ-CUBILLO B, DE LA HIGUERA MAM, LUCENA R, et al. Should cyclosporine be useful in renal transplant recipients affected by SARS-CoV-2?[J]. Am J Transplant, 2020, 20(11): 3173-3181. DOI: 10.1111/ajt.16141.
    [28] KRUEGER KM, ISON MG, GHOSSEIN C. Practical guide to vaccination in all stages of CKD, including patients treated by dialysis or kidney transplantation[J]. Am J Kidney Dis, 2020, 75(3): 417-425. DOI: 10.1053/j.ajkd.2019.06.014.
    [29] KRISHNAMOORTHY S, GHOBADI A, SANTOS RD, et al. CAR-T therapy in solid organ transplant recipients with treatment refractory posttransplant lymphoproliferative disorder[J]. Am J Transplant, 2021, 21(2): 809-814. DOI: 10.1111/ajt.16367.
    [30] STITES E, KUMAR D, OLAITAN O, et al. High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury[J]. Am J Transplant, 2020, 20(9): 2491-2498. DOI: 10.1111/ajt.15822.
    [31] OELLERICH M, SHIPKOVA M, ASENDORF T, et al. Absolute quantification of donor-derived cell-free DNA as a marker of rejection and graft injury in kidney transplantation: results from a prospective observational study[J]. Am J Transplant, 2019, 19(11): 3087-3099. DOI: 10.1111/ajt.15416.
    [32] WEHMEIER C, KARAHAN GE, KROP J, et al. Donorspecific B cell memory in alloimmunized kidney transplant recipients: first clinical application of a novel method[J]. Transplantation, 2020, 104(5): 1026-1032. DOI: 10.1097/TP.0000000000002909.
    [33] SENEV A, OTTEN HG, KAMBUROVA EG, et al. Antibodies against ARHGDIB and ARHGDIB gene expression associate with kidney allograft outcome[J]. Transplantation, 2020, 104(7): 1462-1471. DOI: 10.1097/TP.0000000000003005.
    [34] YANG JYC, SARWAL RD, SIGDEL TK, et al. A urine score for noninvasive accurate diagnosis and prediction of kidney transplant rejection[J]. Sci Transl Med, 2020, 12(535): eaba2501. DOI: 10.1126/scitranslmed.aba2501.
    [35] DOBERER K, SCHIEMANN M, STRASSL R, et al. Torque teno virus for risk stratification of graft rejection and infection in kidney transplant recipients-a prospective observational trial[J]. Am J Transplant, 2020, 20(8): 2081-2090. DOI: 10.1111/ajt.15810.
    [36] BUI K, KILAMBI V, MEHROTRA S. Functional status-based risk-benefit analyses of high-KDPI kidney transplant versus dialysis[J]. Transpl Int, 2019, 32(12): 1297-1312. DOI: 10.1111/tri.13483.
    [37] MOTTER JD, LIYANAGE L, JACKSON KR, et al. Consequences of turning down high KDPI kidney organ offers for kidney transplant candidates[J]. Am J Transplant, 2020, 20(Suppl 3): 426.
    [38] SONNENBERG EM, HSU JY, COHEN JB, et al. Acute kidney injury in deceased organ donors and kidney transplant outcomes: a national cohort study using a novel data source[J]. Ann Surg, 2020, DOI: 10.1097/SLA.0000000000004597[Epub ahead of print].
    [39] YU S, LONG JJ, YU Y, et al. Survival benefit of accepting kidneys from older donation after cardiac death donors[J]. Am J Transplant, 2020, DOI: 10.1111/ajt.16198[Epub ahead of print].
    [40] JOCHMANS I, BRAT A, DAVIES L, et al. Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3 trial[J]. Lancet, 2020, 396(10263): 1653-1662. DOI: 10.1016/S0140-6736(20)32411-9.
    [41] THOMPSON ER, BATES L, IBRAHIM IK, et al. Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation[J]. Am J Transplant, 2020, DOI: 10.1111/ajt.16100[Epub ahead of print].
    [42] UFFING A, PÉREZ-SÁEZ MJ, MAZZALI M, et al. Recurrence of FSGS after kidney transplantation in adults[J]. Clin J Am Soc Nephrol, 2020, 15(2): 247-256. DOI: 10.2215/CJN.08970719.
    [43] BATAL I, VASILESCU ER, DADHANIA DM, et al. Association of HLA typing and alloimmunity with posttransplantation membranous nephropathy: a multicenter case series[J]. Am J Kidney Dis, 2020, 76(3): 374-383. DOI: 10.1053/j.ajkd.2020.01.009.
    [44] HIRAMITSU T, TOMOSUGI T, FUTAMURA K, et al. Calcineurin inhibitor withdrawal is the significant risk factor for de novo DSA production in living donor kidney transplantation[J]. Am J Transplant, 2020, 20(Suppl 3): 849. http://www.researchgate.net/publication/341973812_P1636THE_IMPACT_OF_CALCINEURIN_INHIBITOR_WITHDRAWAL_ON_DE_NOVO_DSA_PRODUCTION_IN_LIVING_DONOR_KIDNEY_TRANSPLANTATION
    [45] Foster K, Perkins H, Patel N, et al. The impact of purposeful reductions in immunosuppression on clinical outcomes in kidney transplantation[J]. Am J Transplant, 2020, 20(Suppl 3): 384.
    [46] GUTIÉRREZ VÍLCHEZ E, VÁZQUEZ T, LÓPEZ V, et al. Impact on graft histology of steroid withdrawal versus standard immunosuppression: randomized, parallel group, controlled clinical trial in low immunological risk kidney transplant patients[J]. Am J Transplant, 2020, 20(Suppl 3): 443.
    [47] VAN LOON E, BERNARDS J, VAN CRAENENBROECK AH, et al The causes of kidney allograft failure: more than alloimmunity.a viewpoint article[J].Transplantation, 2020, 104(2): e46-e56.DOI: 10.1097/TP.0000000000003012.
    [48] DENIC A, MORALES MC, PARK WD, et al.Using computer-assisted morphometrics of 5-year biopsies to identify biomarkers of late renal allograft loss[J].Am J Transplant, 2019, 19(10): 2846-2854.DOI: 10.1111/ajt.15380.
    [49] REEVE J, BÖHMIG GA, ESKANDARY F, et al.Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers[J].Am J Transplant, 2019, 19(10): 2719-2731.DOI: 10.1111/ajt.15351.
    [50] DANOBEITIA JS, ZENS TJ, CHLEBECK PJ, et al.Targeted donor complement blockade after brain death prevents delayed graft function in a nonhuman primate model of kidney transplantation[J].Am J Transplant, 2020, 20(6): 1513-1526.DOI: 10.1111/ajt.15777.
    [51] GANPULE A, PATIL A, SINGH A, et al.Roboticassisted kidney transplant: a single center experience with median follow-up of 2.8 years[J].World J Urol, 2020, 38(10): 2651-2660.DOI: 10.1007/s00345-019-02934-0.
  • 加载中
计量
  • 文章访问数:  889
  • HTML全文浏览量:  333
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回