留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

急性肾损伤过程中铁死亡的研究进展

乔予希 王博 薛武军 丁晨光

乔予希, 王博, 薛武军, 等. 急性肾损伤过程中铁死亡的研究进展[J]. 器官移植, 2020, 11(6): 671-676. doi: 10.3969/j.issn.1674-7445.2020.06.004
引用本文: 乔予希, 王博, 薛武军, 等. 急性肾损伤过程中铁死亡的研究进展[J]. 器官移植, 2020, 11(6): 671-676. doi: 10.3969/j.issn.1674-7445.2020.06.004
Qiao Yuxi, Wang Bo, Xue Wujun, et al. Advancement of research on ferroptosis in acute kidney injury[J]. ORGAN TRANSPLANTATION, 2020, 11(6): 671-676. doi: 10.3969/j.issn.1674-7445.2020.06.004
Citation: Qiao Yuxi, Wang Bo, Xue Wujun, et al. Advancement of research on ferroptosis in acute kidney injury[J]. ORGAN TRANSPLANTATION, 2020, 11(6): 671-676. doi: 10.3969/j.issn.1674-7445.2020.06.004

急性肾损伤过程中铁死亡的研究进展

doi: 10.3969/j.issn.1674-7445.2020.06.004
基金项目: 

国家自然科学基金 81670681

国家自然科学基金 81760137

国家自然科学基金 81870514

国家自然科学基金 81970668

国家自然科学基金 81970670

中央高校基本科研业务 xjj2018091

西安交通大学第一附属医院临床研究课题 XJTU1AF-CRF-2019-008

中国器官移植发展基金会"菁英计划" 2019JYJH04

详细信息
    作者简介:

    乔予希,女,1995年生,硕士,研究方向为肾移植、肾脏缺血-再灌注损伤,Email:qiaoyuxi123@stu.xjtu.edu.cn

    通讯作者:

    丁晨光,男,1982年生,博士,副主任医师,副教授,研究方向为器官移植、肾脏缺血-再灌注损伤、移植免疫,Email:doctor_ding@xjtu.edu.cn

  • 中图分类号: R617;R692

Advancement of research on ferroptosis in acute kidney injury

More Information
  • 摘要: 器官捐献和肾移植手术过程中常伴有急性肾损伤(AKI),导致病死率升高、住院时间延长和住院费用显著增多。近年来,研究表明铁死亡与AKI密切相关,但确切的分子生物学机制尚未阐明,需要更加深入的研究。本文从铁死亡相关生物学标志物和生物学反应两方面,综述铁死亡在AKI中的作用,为防治AKI寻找新的可能方向。

     

  • [1] ZUK A, BONVENTRE JV. Acute kidney injury[J]. Annu Rev Med, 2016, 67:293-307. DOI: 10.1146/annurev-med-050214-013407.
    [2] MEHTA RL, CERDÁ J, BURDMANN EA, et al. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology[J]. Lancet, 2015, 385(9987):2616-2643. DOI: 10.1016/S0140-6736(15)60126-X.
    [3] LINKERMANN A, CHEN G, DONG G, et al. Regulated cell death in AKI[J]. J Am Soc Nephrol, 2014, 25(12):2689-2701. DOI: 10.1681/ASN.2014030262.
    [4] PASPARAKIS M, VANDENABEELE P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534):311-320. DOI: 10.1038/nature14191.
    [5] DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042.
    [6] CONRAD M, ANGELI JP, VANDENABEELE P, et al. Regulated necrosis: disease relevance and therapeutic opportunities[J]. Nat Rev Drug Discov, 2016, 15(5):348-366. DOI: 10.1038/nrd.2015.6.
    [7] LINKERMANN A, BRÄSEN JH, DARDING M, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury[J]. Proc Natl Acad Sci U S A, 2013, 110(29):12024-12029. DOI: 10.1073/pnas.1305538110.
    [8] SCINDIA Y, DEY P, THIRUNAGARI A, et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis[J]. J Am Soc Nephrol, 2015, 26(11):2800-2814. DOI: 10.1681/ASN.2014101037.
    [9] TONNUS W, LINKERMANN A. The in vivo evidence for regulated necrosis[J]. Immunol Rev, 2017, 277(1):128-149. DOI: 10.1111/imr.12551.
    [10] BRIGELIUS-FLOHÉ R, MAIORINO M. Glutathione peroxidases[J]. Biochim Biophys Acta, 2013, 1830(5): 3289-3303. DOI: 10.1016/j.bbagen.2012.11.020.
    [11] YANG WS, SRIRAMARATNAM R, WELSCH ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2):317-331. DOI: 10.1016/j.cell.2013.12.010.
    [12] FRIEDMANN ANGELI JP, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12):1180-1191. DOI: 10.1038/ncb3064.
    [13] SHIMADA K, SKOUTA R, KAPLAN A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7):497-503. DOI: 10.1038/nchembio.2079.
    [14] GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2):298-308. DOI: 10.1016/j.molcel.2015.06.011.
    [15] HU Z, ZHANG H, YI B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis[J]. Cell Death Dis, 2020, 11(1):73. DOI: 10.1038/s41419-020-2256-z.
    [16] BRIDGES RJ, NATALE NR, PATEL SA. System xc- cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS[J]. Br J Pharmacol, 2012, 165(1):20-34. DOI: 10.1111/j.1476-5381.2011.01480.x.
    [17] BURDO J, DARGUSCH R, SCHUBERT D. Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum[J]. J Histochem Cytochem, 2006, 54(5):549-557. doi: 10.1369/jhc.5A6840.2006
    [18] SKOUTA R, DIXON SJ, WANG J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models[J]. J Am Chem Soc, 2014, 136(12):4551-4556. DOI: 10.1021/ja411006a.
    [19] ZHANG D, LIU Y, WEI Q, et al. Tubular p53 regulates multiple genes to mediate AKI[J]. J Am Soc Nephrol, 2014, 25(10):2278-2289. DOI: 10.1681/ASN.2013080902.
    [20] MOLITORIS BA, DAGHER PC, SANDOVAL RM, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury[J]. J Am Soc Nephrol, 2009, 20(8):1754-1764. DOI: 10.1681/ASN.2008111204.
    [21] CABANTCHIK ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology[J]. Front Pharmacol, 2014, 5:45. DOI: 10.3389/fphar.2014.00045.
    [22] DIXON SJ, STOCKWELL BR. The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10(1):9-17. DOI: 10.1038/nchembio.1416.
    [23] DOLL S, CONRAD M. Iron and ferroptosis: a still ill-defined liaison[J]. IUBMB Life, 2017, 69(6):423-434. DOI: 10.1002/iub.1616.
    [24] CLOONAN SM, GLASS K, LAUCHO-CONTRERAS ME, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice[J]. Nat Med, 2016, 22(2):163-174. DOI: 10.1038/nm.4021.
    [25] BOSCH X, POCH E, GRAU JM. Rhabdomyolysis and acute kidney injury[J]. N Engl J Med, 2009, 361(1):62-72. DOI: 10.1056/NEJMra0801327.
    [26] BOUTAUD O, ROBERTS LJ 2ND. Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure[J]. Free Radic Biol Med, 2011, 51(5):1062-1067. DOI: 10.1016/j.freeradbiomed.2010.10.704.
    [27] SOUPENE E, KUYPERS FA. Mammalian long-chain acyl-CoA synthetases[J]. Exp Biol Med (Maywood), 2008, 233(5):507-521. DOI: 10.3181/0710-MR-287.
    [28] INGÓLFSSON HI, MELO MN, VAN EERDEN FJ, et al. Lipid organization of the plasma membrane[J]. J Am Chem Soc, 2014, 136(41):14554-14559. DOI: 10.1021/ja507832e.
    [29] WENZEL SE, TYURINA YY, ZHAO J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171(3):628-641. DOI: 10.1016/j.cell.2017.09.044.
    [30] VAN DER PAAL J, NEYTS EC, VERLACKT CCW, et al. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress[J]. Chem Sci, 2016, 7(1):489-498. DOI: 10.1039/c5sc02311d.
    [31] DIXON SJ, WINTER GE, MUSAVI LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7):1604-1609. DOI: 10.1021/acschembio.5b00245.
    [32] DOLL S, PRONETH B, TYURINA YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98. DOI: 10.1038/nchembio.2239.
    [33] YUAN H, LI X, ZHANG X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Biophys Res Commun, 2016, 478(3):1338-1343. DOI: 10.1016/j.bbrc.2016.08.124.
    [34] KAJARABILLE N, LATUNDE-DADA GO. Programmed cell-death by ferroptosis: antioxidants as mitigators[J]. Int J Mol Sci, 2019, 20(19):4968. DOI: 10.3390/ijms 20194968.
    [35] ANGELI JPF, SHAH R, PRATT DA, et al. Ferroptosis inhibition: mechanisms and opportunities[J]. Trends Pharmacol Sci, 2017, 38(5):489-498. DOI: 10.1016/j.tips.2017.02.005.
    [36] LINKERMANN A, SKOUTA R, HIMMERKUS N, et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111(47):16836-16841. DOI: 10.1073/pnas.1415518111.
    [37] LINKERMANN A, STOCKWELL BR, KRAUTWALD S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure[J]. Nat Rev Immunol, 2014, 14(11):759-767. DOI: 10.1038/nri3743.
    [38] MÜLLER T, DEWITZ C, SCHMITZ J, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure[J]. Cell Mol Life Sci, 2017, 74(19):3631-3645. DOI: 10.1007/s00018-017-2547-4.
    [39] MANCIAS JD, WANG X, GYGI SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509(7498): 105-109. DOI: 10.1038/nature13148.
    [40] HOU W, XIE Y, SONG X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8):1425-1428. DOI: 10.1080/ 15548627.2016.1187366.
    [41] MASALDAN S, CLATWORTHY SAS, GAMELL C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018, 14:100-115. DOI: 10.1016/j.redox. 2017.08.015.
    [42] PRONETH B, CONRAD M. Ferroptosis and necroinflammation, a yet poorly explored link[J]. Cell Death Differ, 2019, 26(1):14-24. DOI: 10.1038/s41418-018-0173-9.
    [43] LI W, FENG G, GAUTHIER JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J]. J Clin Invest, 2019, 129(6):2293-2304. DOI: 10.1172/JCI126428.
    [44] SU L, JIANG X, YANG C, et al. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury[J]. J Biol Chem, 2019, 294(50):19395-19404. DOI: 10.1074/jbc.RA119.010949.
    [45] LOBODA A, DAMULEWICZ M, PYZA E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17):3221-3247. DOI: 10.1007/s00018-016-2223-0.
    [46] FURFARO AL, TRAVERSO N, DOMENICOTTI C, et al. The Nrf2/HO-1 axis in cancer cell growth and chemoresistance[J]. Oxid Med Cell Longev, 2016:1958174. DOI: 10.1155/2016/1958174.
    [47] SUN X, OU Z, CHEN R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1):173-184. DOI: 10.1002/hep.28251.
  • 加载中
计量
  • 文章访问数:  273
  • HTML全文浏览量:  146
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2021-01-19

目录

    /

    返回文章
    返回