留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调节性免疫细胞在异种移植免疫中的作用

石炳毅 陈文 刘志佳

石炳毅, 陈文, 刘志佳. 调节性免疫细胞在异种移植免疫中的作用[J]. 器官移植, 2020, 11(3): 321-325. doi: 10.3969/j.issn.1674-7445.2020.03.001
引用本文: 石炳毅, 陈文, 刘志佳. 调节性免疫细胞在异种移植免疫中的作用[J]. 器官移植, 2020, 11(3): 321-325. doi: 10.3969/j.issn.1674-7445.2020.03.001
Shi Bingyi, Chen Wen, Liu Zhijia. The function of regulatory immunological cell in xenotransplantation immunity[J]. ORGAN TRANSPLANTATION, 2020, 11(3): 321-325. doi: 10.3969/j.issn.1674-7445.2020.03.001
Citation: Shi Bingyi, Chen Wen, Liu Zhijia. The function of regulatory immunological cell in xenotransplantation immunity[J]. ORGAN TRANSPLANTATION, 2020, 11(3): 321-325. doi: 10.3969/j.issn.1674-7445.2020.03.001

调节性免疫细胞在异种移植免疫中的作用

doi: 10.3969/j.issn.1674-7445.2020.03.001
基金项目: 

国家自然科学基金 81570680

国家自然科学基金 81571555

详细信息
    作者简介:

    石炳毅, 主任医师、教授、博士生导师, 第十届全国政协委员, 获国务院政府特殊 津贴、何梁何利科技进步奖和中国医师奖。现任中国人民解放军总医院第八医学中心全军器官移 植研究所名誉所长、北京市器官移植与免疫调节重点实验室主任, 兼任中国人体器官捐献与移植 委员会委员、国家级肾脏移植质控中心主任、中华医学会器官移植学分会主任委员、中国研究型 医院学会移植医学专业委员会主任委员等学术职务。长期从事泌尿外科和器官移植的临床与科研 工作, 构建国家级肾移植数据平台和质控中心, 主持制定器官移植相关行业标准, 为推动我国器 官移植事业的规范化进程做出了突出贡献。先后承担国家 863 课题、科技支撑重大项目、国家自然科学基金课题 20 余项。以第一完成人获国家科技进步二等奖 1 项, 中华医学科技一等奖 2 项, 军队(省部级)科技进步 和医疗成果一、二等奖 5 项, 国家发明专利 6 项。主编国内行业标准《临床诊疗指南》和《临床技术操作规范》器官移植 分册等专著 9 部, 发表论文 330 余篇, 其中 SCI 收录 51 篇, 培养博士(后)、硕士研究生72人

    通讯作者:

    石炳毅,Email:shibingyi666@126.com

  • 中图分类号: R617, R392.4

The function of regulatory immunological cell in xenotransplantation immunity

More Information
  • 摘要: 异种移植是未来解决器官短缺最有前景的方法。近年来基因编辑和免疫学技术的进步推动了异种 移植的快速发展, 但是异种移植的临床应用仍然存在诸多难以克服的障碍, 其中排斥反应是引起异种移植失败 的最重要原因。调节性免疫细胞是机体内一群具有负性调节功能的免疫细胞, 能够抑制同种异体移植排斥反应, 延长移植物的存活时间。本文总结了近几年调节性免疫细胞在异种移植应用的研究进展, 为异种移植排斥反应 预防和治疗提供参考。

     

  • [1] STOLF NAG. Xenotransplantation: on the way to clinical application?[J]. Braz J Cardiovasc Surg, 2019,34(3):2. DOI: 10.21470/1678-9741-2019-0604.
    [2] KRAJEWSKA M, KOŚCIELSKA-KASPRZAK K, KAMIŃSKA D, et al. Kidney transplant outcome is associated with regulatory T cell population and gene expression early after transplantation[J]. J Immunol Res, 2019:7452019. DOI: 10.1155/2019/7452019.
    [3] REEMTSMA K, MCCRACKEN BH, SCHLEGEL JU, et al. Heterotransplantation of the kidney: two clinical experiences[J]. Science, 1964, 143(3607):700-702. doi: 10.1126/science.143.3607.700
    [4] STARZL TE, MARCHIORO TL, PETERS GN, et al. Renal heterotransplantation from baboon to man: experience with 6 cases[J]. Transplantation, 1964, 2:752-776. doi: 10.1097/00007890-196411000-00009
    [5] STARZL TE, VALDIVIA LA, MURASE N, et al. The biological basis of and strategies for clinical xenotransplantation[J]. Immunol Rev, 1994, 141:213-244. doi: 10.1111/j.1600-065X.1994.tb00879.x
    [6] MAKOWA L, CRAMER DV, HOFFMAN A, et al. The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure[J]. Transplantation, 1995, 59(12):1654-1659. doi: 10.1097/00007890-199506270-00002
    [7] MCGREGOR CG, TEOTIA SS, BYRNE GW, et al. Cardiac xenotransplantation: progress toward the clinic[J]. Transplantation, 2004, 78(11):1569-1575. doi: 10.1097/01.TP.0000147302.64947.43
    [8] MOHIUDDIN MM, SINGH AK, CORCORAN PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7:11138. DOI: 10.1038/ncomms11138.
    [9] 石炳毅 , 陈文 . 临床异种器官移植所面临的种种挑 战 [J]. 中华器官移植杂志 ,2017,38(12):705-707. doi: 10.3760/cma.j.issn.0254-1785.2017.12.001

    SHI BY, CHEN W. Challenges of clinical xenotransplantation[J]. Chin J Organ Transplant, 2017,38(12):705-707. doi: 10.3760/cma.j.issn.0254-1785.2017.12.001
    [10] 石炳毅 . 调节性免疫细胞网络在移植免疫中的作 用 [J]. 中华医学杂志 ,2011,91(44):3154-3157.DOI: 10. 3760/cma.j.issn.0376-2491.2011.44.018.

    SHI BY. Role of regulatory immune cell networks in transplantation immunity [J]. Natl Med J China, 2011,91(44):3154-3157. DOI: 10.3760/cma.j.issn. 0376- 2491.2011.44.018.
    [11] TANG Q, VINCENTI F. Transplant trials with Tregs: perils and promises[J]. J Clin Invest, 2017, 127(7):2505- 2512. DOI: 10.1172/JCI90598.
    [12] CHEN W, BAI J, HUANG H, et al. Low proportion of follicular regulatory T cell in renal transplant patients with chronic antibody-mediated rejection[J]. Sci Rep,2017, 7(1):1322. DOI: 10.1038/s41598-017-01625-3.
    [13] LINO AC, DANG VD, LAMPROPOULOU V, et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells[J]. Immunity, 2018, 49(1):120-133. DOI: 10.1016/j.immuni.2018.06.007.
    [14] FERREIRA LMR, MULLER YD, BLUESTONE JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18(10):749-769. DOI: 10.1038/s41573-019-0041-4.
    [15] SAITO T, NISHIKAWA H, WADA H, et al. Two Foxp3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers[J]. Nat Med, 2016, 22(6):679-684. DOI: 10.1038/nm.4086.
    [16] YANG S, SHENG X, XIANG D, et al. CD150highTreg cells may attenuate graft versus host disease and intestinal cell apoptosis after hematopoietic stem cell transplantation[J]. Am J Transl Res, 2019, 11(3):1299-1310.
    [17] WU J, HU M, QIAN YW, et al. In vivo costimulation blockade-induced regulatory T cells demonstrate dominant and specific tolerance to porcine islet xenografts[J]. Transplantation, 2017, 101(7):1587-1599. DOI: 10.1097/TP.0000000000001482.
    [18] YI S, JI M, WU J, et al. Adoptive transfer with in vitro expanded human regulatory T cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice[J]. Diabetes, 2012, 61(5):1180-1191. DOI: 10.2337/db11-1306.
    [19] MA Y, HE KM, GARCIA B, et al. Adoptive transfer of double negative T regulatory cells induces B-cell death in vivo and alters rejection pattern of rat-to-mouse heart transplantation[J]. Xenotransplantation, 2008, 15(1):56- 63. DOI: 10.1111/j.1399-3089.2008.00444.x.
    [20] SHIN JS, MIN BH, KIM JM, et al. Failure of transplantation tolerance induction by autologous regulatory T cells in the pig-to-non-human primate islet xenotransplantation model[J]. Xenotransplantation, 2016, 23(4):300-309. DOI: 10.1111/xen.12246.
    [21] GORDY JT, LUO K, FRANCICA B, et al. Anti-IL- 10-mediated enhancement of antitumor efficacy of a dendritic cell-targeting MIP3α-gp100 vaccine in the B16F10 mouse melanoma model is dependent on type I interferons[J]. J Immunother, 2018, 41(4):181-189. DOI: 10.1097/CJI.0000000000000212.
    [22] THOMSON AW, TURNQUIST HR, ZAHORCHAK AF, et al. Tolerogenic dendritic cell-regulatory T-cell interaction and the promotion of transplant tolerance[J]. Transplantation, 2009, 87(9 Suppl): S86-S90. DOI: 10.1097/TP.0b013e3181a2dcec.
    [23] EZZELARAB MB, RAICH-REGUE D, LU L, et al. Renal allograft survival in nonhuman primates infused with donor antigen-pulsed autologous regulatory dendritic cells[J]. Am J Transplant, 2017, 17(6):1476-1489. DOI: 10.1111/ajt.14182.
    [24] THOMSON AW, HUMAR A, LAKKIS FG, et al. Regulatory dendritic cells for promotion of liver transplant operational tolerance: rationale for a clinical trial and accompanying mechanistic studies[J]. Hum Immunol, 2018, 79(5):314-321. DOI: 10.1016/j.humimm.2017.10.017.
    [25] TIAN M, LV Y, ZHAI C, et al. Alternative immunomodulatory strategies for xenotransplantation: CD80/CD86-CTLA4 pathway-modified immature dendritic cells promote xenograft survival[J]. PLoS One, 2013, 8(7): e69640. DOI: 10.1371/journal.pone.0069640.
    [26] MADELON N, PUGA YUNG GL, SEEBACH JD. Human anti-pig NK cell and CD8+ T-cell responses in the presence of regulatory dendritic cells[J]. Xenotransplantation, 2016, 23(6):479-489. DOI: 10.1111/xen.12279.
    [27] LI M, ECKL J, ABICHT JM, et al. Induction of porcinespecific regulatory T cells with high specificity and expression of IL-10 and TGF-β1 using baboon-derived tolerogenic dendritic cells[J]. Xenotransplantation, 2018, 25(1). DOI: 10.1111/xen.12355.
  • 加载中
计量
  • 文章访问数:  166
  • HTML全文浏览量:  78
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回