留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

心脏移植物血管病变研究进展

张正刚 郑芳

张正刚, 郑芳. 心脏移植物血管病变研究进展[J]. 器官移植, 2020, 11(1): 104-109, 125. doi: 10.3969/j.issn.1674-7445.2020.01.017
引用本文: 张正刚, 郑芳. 心脏移植物血管病变研究进展[J]. 器官移植, 2020, 11(1): 104-109, 125. doi: 10.3969/j.issn.1674-7445.2020.01.017
Zhang Zhenggang, Zheng Fang. Research progress on cardiac allograft vasculopathy[J]. ORGAN TRANSPLANTATION, 2020, 11(1): 104-109, 125. doi: 10.3969/j.issn.1674-7445.2020.01.017
Citation: Zhang Zhenggang, Zheng Fang. Research progress on cardiac allograft vasculopathy[J]. ORGAN TRANSPLANTATION, 2020, 11(1): 104-109, 125. doi: 10.3969/j.issn.1674-7445.2020.01.017

心脏移植物血管病变研究进展

doi: 10.3969/j.issn.1674-7445.2020.01.017
基金项目: 

国家自然科学基金 31670876

国家自然科学基金 31470852

详细信息
    作者简介:

    张正刚,男,1982年生,博士研究生,主治医师,研究方向为器官移植免疫与心脏大血管外科,Email:571869406@qq.com

    通讯作者:

    郑芳,女,1972年生,博士,教授,研究方向为器官移植免疫与自身免疫病,Email:zhengfangtj@hust.edu.cn

  • 中图分类号: R617, R541.6+1

Research progress on cardiac allograft vasculopathy

More Information
  • 摘要: 同种异体心脏移植(HTx)是终末期心力衰竭患者的首选治疗方法,而HTx术后远期并发心脏移植物血管病变(CAV)是影响受者长期存活的主要因素。迄今为止,尚无预防和治疗CAV的有效方法。本文从CAV的病理学表现、引起CAV的免疫学因素以及引起CAV的其他危险因素等方面进行综述,为CAV研究提供新的思路和认识。

     

  • [1] KIM IC, YOUN JC, KOBASHIGAWA JA. The past, present and future of heart transplantation[J]. Korean Circ J, 2018, 48(7):565-590. DOI: 10.4070/kcj.2018.0189.
    [2] LUND LH, EDWARDS LB, DIPCHAND AI, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-third adult heart transplantation report-2016; focus theme: primary diagnostic indications for transplant[J]. J Heart Lung Transplant, 2016, 35(10):1158-1169. DOI: 10.1016/j.healun.2016.08.017.
    [3] NIKOLOVA AP, KOBASHIGAWA JA. Cardiac allograft vasculopathy: the enduring enemy of cardiac transplantation[J]. Transplantation, 2019, 103(7):1338-1348. DOI: 10.1097/TP.0000000000002704.
    [4] SPARTALIS M, SPARTALIS E, TZATZAKI E, et al. Cardiac allograft vasculopathy after heart transplantation: current prevention and treatment strategies[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1):303-311. DOI: 10.26355/eurrev_201901_16777.
    [5] FEARON WF, OKADA K, KOBASHIGAWA JA, et al. Angiotensin-converting enzyme inhibition early after heart transplantation[J]. J Am Coll Cardiol, 2017, 69(23):2832-2841. DOI: 10.1016/j.jacc.2017.03.598.
    [6] SEKI A, FISHBEIN MC. Predicting the development of cardiac allograft vasculopathy[J]. Cardiovasc Pathol, 2014, 23(5):253-260. DOI: 10.1016/j.carpath.2014.05.001.
    [7] LABARRERE CA, JAEGER BR, KASSAB GS. Cardiac allograft vasculopathy: microvascular arteriolar capillaries ("capioles") and survival[J]. Front Biosci (Elite Ed), 2017, 9:110-128.
    [8] MANGINI S, ALVES BR, SILVESTRE OM, et al.Heart transplantation: review[J]. Einstein (Sao Paulo), 2015, 13(2):310-318. DOI: 10.1590/S1679-45082015RW3154.
    [9] MEROLA J, JANE-WIT DD, POBER JS. Recent advances in allograft vasculopathy[J]. Curr Opin Organ Transplant, 2017, 22(1):1-7. DOI: 10.1097/MOT.0000000000000370.
    [10] TAWAKOL A, TARDIF JC. Early detection of cardiac allograft vasculopathy and long-term risk after heart transplantation[J]. J Am Coll Cardiol, 2016, 68(4):393-395. DOI: 10.1016/j.jacc.2016.05.046.
    [11] JANSEN MA, OTTEN HG, DE WEGER RA, et al. Immunological and fibrotic mechanisms in cardiac allograft vasculopathy[J]. Transplantation, 2015, 99(12):2467-2475. DOI: 10.1097/TP.0000000000000848.
    [12] ZEISBERG EM, TARNAVSKI O, ZEISBERG M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis[J]. Nat Med, 2007, 13(8):952-961. doi: 10.1038/nm1613
    [13] DIREKZE NC, FORBES SJ, BRITTAN M, et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice[J]. Stem Cells, 2003, 21(5):514-520. doi: 10.1634/stemcells.21-5-514
    [14] PICHLER M, RAINER PP, SCHAUER S, et al. Cardiac fibrosis in human transplanted hearts is mainly driven by cells of intracardiac origin[J]. J Am Coll Cardiol, 2012, 59(11):1008-1016. DOI: 10.1016/j.jacc. 2011.11.036.
    [15] SOLER MJ, BATLLE M, RIERA M, et al. ACE2 and ACE in acute and chronic rejection after human heart transplantation[J]. Int J Cardiol, 2019, 275:59-64. DOI: 10.1016/j.ijcard.2018.10.002.
    [16] ZHAO Y, CHEN S, LAN P, et al. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model[J]. Am J Transplant, 2018, 18(3):604-616. DOI: 10.1111/ajt.14543.
    [17] DASHKEVICH A, RAISSADATI A, SYRJÄLÄ SO, et al. Ischemia-reperfusion injury enhances lymphatic endothelial VEGFR3 and rejection in cardiac allografts[J]. Am J Transplant, 2016, 16(4):1160-1172. DOI: 10.1111/ajt.13564.
    [18] RIQUELME P, TOMIUK S, KAMMLER A, et al. IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients[J]. Mol Ther, 2013, 21(2):409-422. DOI: 10.1038/mt.2012.168.
    [19] WU C, ZHAO Y, XIAO X, et al. Graft-infiltrating macrophages adopt an M2 phenotype and are inhibited by purinergic receptor P2X7 antagonist in chronic rejection[J]. Am J Transplant, 2016, 16(9):2563-2573. DOI: 10.1111/ajt.13808.
    [20] BORTHWICK LA, BARRON L, HART KM, et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis[J]. Mucosal Immunol, 2016, 9(1):38-55. DOI: 10.1038/mi.2015.34.
    [21] DAVIES LC, TAYLOR PR. Tissue-resident macrophages: then and now[J]. Immunology, 2015, 144(4):541-548. DOI: 10.1111/imm.12451.
    [22] NAYAK DK, ZHOU F, XU M, et al. Long-term persistence of donor alveolar macrophages in human lung transplant recipients that influences donor-specific immune responses[J]. Am J Transplant, 2016, 16(8):2300-2311. DOI: 10.1111/ajt.13819.
    [23] LIN CM, PLENTER RJ, COULOMBE M, et al. Interferon gamma and contact-dependent cytotoxicity are each rate limiting for natural killer cell-mediated antibody-dependent chronic rejection[J]. Am J Transplant, 2016, 16(11):3121-3130. DOI: 10.1111/ajt.13865.
    [24] HIROHASHI T, CHASE CM, DELLA PELLE P, et al. A novel pathway of chronic allograft rejection mediated by NK cells and alloantibody[J]. Am J Transplant, 2012, 12(2):313-321. DOI: 10.1111/j.1600-6143.2011.03836.x.
    [25] SCHIECHL G, HERMANN FJ, RODRIGUEZ GOMEZ M, et al. Basophils trigger fibroblast activation in cardiac allograft fibrosis development[J]. Am J Transplant, 2016, 16(9):2574-2588. DOI: 10.1111/ajt.13764.
    [26] CHIH S, CHONG AY, MIELNICZUK LM, et al. Allograft vasculopathy: the Achilles' heel of heart transplantation[J]. J Am Coll Cardiol, 2016, 68(1):80-91. DOI: 10.1016/j.jacc.2016.04.033.
    [27] EDWARDS LA, NOWOCIN AK, JAFARI NV, et al. Chronic rejection of cardiac allografts is associatedwith increased lymphatic flow and cellulartrafficking[J]. Circulation, 2018, 137(5):488-503.DOI:10. 1161/CIRCULATIONAHA.117.028533.
    [28] BALDWIN HS, DRAKOS SG. Lymphangiogenesis in chronic rejection and coronary allograft vasculopathy: anemerging diagnostic and therapeutic target?[J]. Circulation, 2018, 137(5):504-507.DOI:10.1161/CIRCULATIONAHA. 117.031716.
    [29] KOHLGRUBER AC, GAL-OZ ST, LAMARCHE NM, et al. γ δ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis[J]. Nat Immunol, 2018, 19(5):464-474. DOI: 10.1038/s41590-018-0094-2.
    [30] ZORN E. Effector B cells in cardiac allograft vasculopathy[J]. Curr Opin Organ Transplant, 2019, 24(1):31-36. DOI: 10.1097/MOT.0000000000000591.
    [31] CHATTERJEE D, MOORE C, GAO B, et al. Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy[J]. J Heart Lung Transplant, 2018, 37(3):385-393. DOI: 10.1016/j.healun.2017.09.011.
    [32] HUIBERS MM, GAREAU AJ, BEERTHUIJZEN JM, et al. Donor-specific antibodies are produced locally in ectopic lymphoid structures in cardiac allografts[J]. Am J Transplant, 2017, 17(1):246-254. DOI: 10.1111/ajt.13969.
    [33] MOHIB K, CHERUKURI A, ROTHSTEIN DM. Regulatory B cells and transplantation: almost prime time?[J]. Curr Opin Organ Transplant, 2018, 23(5):524-532. DOI: 10.1097/MOT.0000000000000559.
    [34] ZENG Q, NG YH, SINGH T, et al. B cells mediate chronic allograft rejection independently of antibody production[J]. J Clin Invest, 2014, 124(3):1052-1056. DOI: 10.1172/JCI70084.
    [35] QIN L, LI G, KIRKILES-SMITH N, et al. Complement C5 inhibition reduces T cell-mediated allograft vasculopathy caused by both alloantibody and ischemia reperfusion injury in humanized mice[J]. Am J Transplant, 2016, 16(10):2865-2876. DOI: 10.1111/ajt.13834.
    [36] THOMAS KA, VALENZUELA NM, GJERTSON D, et al. An anti-C1s monoclonal, TNT003, inhibits complement activation induced by antibodies against HLA[J]. Am J Transplant, 2015, 15(8):2037-2049. DOI:10.1111/ajt. 13273.
    [37] ZHANG Q, REED EF. The importance of non-HLA antibodies in transplantation[J]. Nat Rev Nephrol, 2016, 12(8):484-495. DOI: 10.1038/nrneph.2016.88.
    [38] ROSE ML. Role of anti-vimentin antibodies in allograft rejection[J]. Hum Immunol, 2013, 74(11):1459-1462. DOI: 10.1016/j.humimm.2013.06.006.
    [39] ATKINSON C, QIAO F, YANG X, et al. Targeting pathogenic postischemic self-recognition by natural IgM to protect against posttransplantation cardiac reperfusion injury[J]. Circulation, 2015, 131(13):1171-1180. DOI: 10.1161/CIRCULATIONAHA.114.010482.
    [40] PELLEGRINI L, FOGLIO E, PONTEMEZZO E, et al. HMGB1 and repair: focus on the heart[J]. Pharmacol Ther, 2019, 196:160-182. DOI: 10.1016/j.pharmthera.2018.12.005.
    [41] ZOU H, YANG Y, GAO M, et al. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs[J]. Am J Transplant, 2014, 14(8):1765-1777. DOI: 10.1111/ajt.12781.
    [42] SIEDE J, FRÖHLICH A, DATSI A, et al. IL-33 receptor-expressing regulatory T cells are highly activated, Th2 biased and suppress CD4 T cell proliferation through IL-10 and TGFβ release[J]. PLoS One, 2016, 11(8):e0161507. DOI: 10.1371/journal.pone.0161507.
    [43] JIN Y, KONG D, LIU C, et al. Role of IL-33 in transplant biology[J]. Eur Cytokine Netw, 2019, 30(2):39-42. DOI: 10.1684/ecn.2019.0429.
    [44] DAI C, LU FN, JIN N, et al. Recombinant IL-33 prolongs leflunomide-mediated graft survival by reducing IFN-γ and expanding CD4(+)Foxp3(+) T cells in concordant heart transplantation[J]. Lab Invest, 2016, 96(8):820-829. DOI: 10.1038/labinvest.2016.54.
    [45] CAYROL C, GIRARD JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family[J]. Immunol Rev, 2018, 281(1):154-168. DOI: 10.1111/imr.12619.
    [46] SPALLAROSSA P, MELIOTA G, BRUNELLI C, et al. Potential cardiac risk of immune-checkpoint blockade as anticancer treatment: what we know, what we do not know, and what we can do to prevent adverse effects[J]. Med Res Rev, 2018, 38(5):1447-1468. DOI: 10.1002/med.21478.
    [47] KYTHREOTOU A, SIDDIQUE A, MAURI FA, et al. PD-L1[J]. J Clin Pathol, 2018, 71(3):189-194. DOI: 10.1136/jclinpath-2017-204853.
  • 加载中
计量
  • 文章访问数:  343
  • HTML全文浏览量:  277
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-22
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-01-15

目录

    /

    返回文章
    返回