留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多能干细胞来源的胰岛细胞及其在糖尿病治疗中的应用

付天龙 聂螣騛 殷浩 程新

付天龙, 聂螣騛, 殷浩, 等. 多能干细胞来源的胰岛细胞及其在糖尿病治疗中的应用[J]. 器官移植, 2019, 10(6): 719-723. doi: 10.3969/j.issn.1674-7445.2019.06.015
引用本文: 付天龙, 聂螣騛, 殷浩, 等. 多能干细胞来源的胰岛细胞及其在糖尿病治疗中的应用[J]. 器官移植, 2019, 10(6): 719-723. doi: 10.3969/j.issn.1674-7445.2019.06.015
Fu Tianlong, Nie Tengfei, Yin Hao, et al. Pancreatic islet cells derived from pluripotent stem cells and their application in the treatment of diabetes[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 719-723. doi: 10.3969/j.issn.1674-7445.2019.06.015
Citation: Fu Tianlong, Nie Tengfei, Yin Hao, et al. Pancreatic islet cells derived from pluripotent stem cells and their application in the treatment of diabetes[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 719-723. doi: 10.3969/j.issn.1674-7445.2019.06.015

多能干细胞来源的胰岛细胞及其在糖尿病治疗中的应用

doi: 10.3969/j.issn.1674-7445.2019.06.015
基金项目: 

国家自然科学基金项目 31771061

国家自然科学基金项目 81870530

国家重点研发计划 2017YFA0102702

国家重点研发计划 2017YFA0504501

中国科学院科研仪器设备研制项目 YJKYYQ20170042

中国科学院战略性先导科技专项 XDA16020203

详细信息
    作者简介:

    付天龙,男,1994年生,博士研究生,研究方向为干细胞体外胰向分化,Email:futianlong6@sibcb.ac.cn

    通讯作者:

    程新,男,1969年生,博士,研究员,主任医师,研究方向为干细胞体外定向分化,Email:xcheng@sibcb.ac.cn

  • 中图分类号: R617, R587.1

Pancreatic islet cells derived from pluripotent stem cells and their application in the treatment of diabetes

  • 摘要: 干细胞体外定向分化技术的发展使体外再造可用于移植的胰岛细胞或组织成为可能,同时基于包囊等技术的辅助免疫调控方式为解决移植后的免疫排斥反应提供了方案,这些新技术的高速发展为糖尿病的细胞治疗奠定了基础。本文着重探讨人类胰腺发育过程与干细胞定向分化的关系、干细胞体外胰向分化系统的建立以及免疫调控技术在多能干细胞(PSC)胰岛移植中的应用。

     

  • [1] DIELEMAN JL, BARAL R, BIRGER M, et al. US spending on personal health care and public health, 1996-2013[J]. JAMA, 2016, 316(24):2627-2646. DOI: 10.1001/jama.2016.16885.
    [2] American Diabetes Association. 1. Improving care and promoting health in populations: standards of medical care in diabetes-2018[J]. Diabetes Care, 2018, 41(Suppl 1):S7-S12. DOI: 10.2337/dc18-S001.
    [3] WANG L, GAO P, ZHANG M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24):2515-2523. DOI: 10.1001/jama.2017.7596.
    [4] SHAPIRO AM, LAKEY JR, RYAN EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4):230-238. doi: 10.1056/NEJM200007273430401
    [5] ABDOLAZIMI Y, ZHAO Z, LEE S, et al. CC-401 promotes β-cell replication via pleiotropic consequences of DYRK1A/B inhibition[J]. Endocrinology, 2018, 159(9):3143-3157. DOI: 10.1210/en.2018-00083.
    [6] WANG P, KARAKOSE E, LIU H, et al. Combined inhibition of DYRK1A, SMAD, and trithorax pathways synergizes to induce robust replication in adult human beta cells[J]. Cell Metab, 2019, 29(3):638-652. DOI: 10.1016/j.cmet.2018.12.005.
    [7] LOOMANS CJM, WILLIAMS GIULIANI N, BALAK J, et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential[J]. Stem Cell Reports, 2018, 10(3):712-724. DOI: 10.1016/j.stemcr.2018.02.005.
    [8] SNEDDON JB, TANG Q, STOCK P, et al. Stem cell therapies for treating diabetes: progress and remaining challenges[J]. Cell Stem Cell, 2018, 22(6):810-823. DOI: 10.1016/j.stem.2018.05.016.
    [9] LATRES E, FINAN DA, GREENSTEIN JL, et al. Navigating two roads to glucose normalization in diabetes: automated insulin delivery devices and cell therapy[J]. Cell Metab, 2019, 29(3):545-563. DOI: 10.1016/j.cmet.2019.02.007.
    [10] DESAI T, SHEA LD. Advances in islet encapsulation technologies[J]. Nat Rev Drug Discov, 2017, 16(5):367. DOI: 10.1038/nrd.2017.67.
    [11] DOLENŠEK J, RUPNIK MS, STOŽER A. Structural similarities and differences between the human and the mouse pancreas[J]. Islets, 2015, 7(1):e1024405. DOI: 10.1080/19382014.2015.1024405.
    [12] RODRIGUEZ-DIAZ R, MOLANO RD, WEITZ JR, et al. Paracrine interactions within the pancreatic islet determine the glycemic set point[J]. Cell Metab, 2018, 27(3):549-558. DOI: 10.1016/j.cmet.2018.01.015.
    [13] JENNINGS RE, BERRY AA, KIRKWOOD-WILSON R, et al. Development of the human pancreas from foregut to endocrine commitment[J]. Diabetes, 2013, 62(10):3514-3522. DOI: 10.2337/db12-1479.
    [14] JENNINGS RE, BERRY AA, STRUTT JP, et al. Human pancreas development[J]. Development, 2015, 142(18):3126-3137. DOI: 10.1242/dev.120063.
    [15] SHERWOOD RI, CHEN TY, MELTON DA. Transcriptional dynamics of endodermal organ formation[J]. Dev Dyn, 2009, 238(1):29-42. DOI: 10.1002/dvdy.21810.
    [16] BASTIDAS-PONCE A, SCHEIBNER K, LICKERT H, et al. Cellular and molecular mechanisms coordinating pancreas development[J]. Development, 2017, 144(16):2873-2888. DOI: 10.1242/dev.140756.
    [17] HART NJ, POWERS AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions[J]. Diabetologia, 2019, 62(2):212-222. DOI: 10.1007/s00125-018-4772-2.
    [18] SHARON N, CHAWLA R, MUELLER J, et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets[J]. Cell, 2019, 176(4):790-804. DOI: 10.1016/j.cell.2018.12.003.
    [19] HOHWIELER M, ILLING A, HERMANN PC, et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling[J]. Gut, 2017, 66(3):473-486. DOI: 10.1136/gutjnl-2016-312423.
    [20] ASSADY S, MAOR G, AMIT M, et al. Insulin production by human embryonic stem cells[J]. Diabetes, 2001, 50(8):1691-1697. doi: 10.2337/diabetes.50.8.1691
    [21] D'AMOUR KA, AGULNICK AD, ELIAZER S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm[J]. Nat Biotechnol, 2005, 23(12):1534-1541. doi: 10.1038/nbt1163
    [22] D'AMOUR KA, BANG AG, ELIAZER S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 2006, 24(11):1392-1401. doi: 10.1038/nbt1259
    [23] JIANG W, SHI Y, ZHAO D, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells[J]. Cell Res, 2007, 17(4):333-344. doi: 10.1038/cr.2007.28
    [24] KROON E, MARTINSON LA, KADOYA K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo[J]. Nat Biotechnol, 2008, 26(4):443-452. DOI: 10.1038/nbt1393.
    [25] ZHANG D, JIANG W, LIU M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438. DOI: 10.1038/cr.2009.28.
    [26] NOSTRO MC, SARANGI F, OGAWA S, et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells[J]. Development, 2011, 138(5):861-871. DOI: 10.1242/dev.055236.
    [27] HRVATIN S, O'DONNELL CW, DENG F, et al. Differentiated human stem cells resemble fetal, not adult, β cells[J]. Proc Natl Acad Sci U S A, 2014, 111(8):3038-3043. DOI: 10.1073/pnas.1400709111.
    [28] NOSTRO MC, SARANGI F, YANG C, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines[J]. Stem Cell Reports, 2015, 4(4):591-604. DOI: 10.1016/j.stemcr.2015.02.017.
    [29] REZANIA A, BRUIN JE, RIEDEL MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice[J]. Diabetes, 2012, 61(8):2016-2029. DOI: 10.2337/db11-1711.
    [30] REZANIA A, BRUIN JE, ARORA P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11):1121-1133. DOI: 10.1038/nbt.3033.
    [31] PAGLIUCA FW, MILLMAN JR, GÜRTLER M, et al. Generation of functional human pancreatic β cells in vitro[J]. Cell, 2014, 159(2):428-439. DOI: 10.1016/j.cell.2014.09.040.
    [32] VERES A, FAUST AL, BUSHNELL HL, et al. Charting cellular identity during human in vitro β-cell differentiation[J]. Nature, 2019, 569(7756):368-373. DOI: 10.1038/s41586-019-1168-5.
    [33] VELAZCO-CRUZ L, SONG J, MAXWELL KG, et al. Acquisition of dynamic function in human stem cell-derived β cells[J]. Stem Cell Reports, 2019, 12(2):351-365. DOI: 10.1016/j.stemcr.2018.12.012.
    [34] NAIR GG, LIU JS, RUSS HA, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells[J]. Nat Cell Biol, 2019, 21(2):263-274. DOI: 10.1038/s41556-018-0271-4.
    [35] CHENG X, YING L, LU L, et al. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells[J]. Cell Stem Cell, 2012, 10(4):371-384. DOI: 10.1016/j.stem.2012.02.024.
    [36] HUANG L, HOLTZINGER A, JAGAN I, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids[J]. Nat Med, 2015, 21(11):1364-1371. DOI: 10.1038/nm.3973.
    [37] TROTT J, TAN EK, ONG S, et al. Long-term culture of self-renewing pancreatic progenitors derived from human pluripotent stem cells[J]. Stem Cell Reports, 2017, 8(6):1675-1688. DOI: 10.1016/j.stemcr.2017.05.019.
    [38] KONAGAYA S, IWATA H. Chemically defined conditions for long-term maintenance of pancreatic progenitors derived from human induced pluripotent stem cells[J]. Sci Rep, 2019, 9(1):640. DOI: 10.1038/s41598-018-36606-7.
    [39] ViaCyte. A safety, tolerability, and efficacy study of VC-01TM combination product in subjects with type 1 diabetes mellitus[EB/OL].(2014-09-12). https://clinicaltrials.gov/ct2/show/NCT02239354.
    [40] ViaCyte. A safety, tolerability, and efficacy study of VC-02TM combination product in subjects with type 1 diabetes mellitus and hypoglycemia unawareness [EB/OL].(2017-05-23). https://clinicaltrials.gov/ct2/show/NCT03163511.
    [41] JU ST, PANKA DJ, CUI H, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation[J]. Nature, 1995, 373(6513):444-448. doi: 10.1038/373444a0
    [42] LAU HT, YU M, FONTANA A, et al. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice[J]. Science, 1996, 273(5271):109-112. doi: 10.1126/science.273.5271.109
    [43] YOLCU ES, ASKENASY N, SINGH NP, et al. Cell membrane modification for rapid display of proteins as a novel means of immunomodulation: FasL-decorated cells prevent islet graft rejection[J]. Immunity, 2002, 17(6):795-808. doi: 10.1016/S1074-7613(02)00482-X
    [44] YOLCU ES, ZHAO H, BANDURA-MORGAN L, et al. Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice[J]. J Immunol, 2011, 187(11):5901-5909. DOI: 10.4049/jimmunol.1003266.
    [45] HEADEN DM, WOODWARD KB, CORONEL MM, et al. Local immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance[J]. Nat Mater, 2018, 17(8):732-739. DOI: 10.1038/s41563-018-0099-0.
  • 加载中
计量
  • 文章访问数:  272
  • HTML全文浏览量:  114
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回