留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过继性回输Treg对小鼠同种胰岛移植物免疫排斥反应的影响

李俊辉 赵渊宇 郭猛 季峻松 袁航 王辉 陆齐 傅志仁 丁国善 殷浩

李俊辉, 赵渊宇, 郭猛, 等. 过继性回输Treg对小鼠同种胰岛移植物免疫排斥反应的影响[J]. 器官移植, 2019, 10(6): 690-695. doi: 10.3969/j.issn.1674-7445.2019.06.010
引用本文: 李俊辉, 赵渊宇, 郭猛, 等. 过继性回输Treg对小鼠同种胰岛移植物免疫排斥反应的影响[J]. 器官移植, 2019, 10(6): 690-695. doi: 10.3969/j.issn.1674-7445.2019.06.010
Li Junhui, Zhao Yuanyu, Guo Meng, et al. Effect of adoptive reinfusion of Treg on immune rejection of islet allografts in mice[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 690-695. doi: 10.3969/j.issn.1674-7445.2019.06.010
Citation: Li Junhui, Zhao Yuanyu, Guo Meng, et al. Effect of adoptive reinfusion of Treg on immune rejection of islet allografts in mice[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 690-695. doi: 10.3969/j.issn.1674-7445.2019.06.010

过继性回输Treg对小鼠同种胰岛移植物免疫排斥反应的影响

doi: 10.3969/j.issn.1674-7445.2019.06.010
基金项目: 

国家自然科学基金面上项目 81870530

上海市科研基金 2018YQ53

上海市科研基金 SHDC12018X14

上海市科研基金 19QA1408600

详细信息
    作者简介:

    李俊辉,男,1995年生,学士,研究方向为移植免疫,Email:blee_jh@163.com

    通讯作者:

    殷浩,男,1984年生,博士,教授,研究方向为器官移植、免疫调控、胰岛移植,Email:roytina0241032@hotmail.com

  • 中图分类号: R617, R587.1, R392.4

Effect of adoptive reinfusion of Treg on immune rejection of islet allografts in mice

More Information
  • 图  1  胰岛移植术后14 d内小鼠的血糖和C肽变化

    Figure  1.  Changes of blood glucose and C-peptide in mice within 14 days after islet transplantation

    图  2  胰岛移植术后14 d内活体成像检测移植物存活情况

    Figure  2.  Survival of grafts detected by in vivo imaging system within 14 days after islet transplantation

  • [1] SHAPIRO AM, LAKEY JR, RYAN EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4):230-238. doi: 10.1056/NEJM200007273430401
    [2] TRIÑANES J, RODRIGUEZ-RODRIGUEZ AE, BRITO-CASILLAS Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic β cells[J]. Am J Transplant, 2017, 17(11):2829-2840. DOI: 10.1111/ajt.14323.
    [3] SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3):1151-1164. http://cn.bing.com/academic/profile?id=d8509cddf81bee5065f1cf55f084baaa&encoded=0&v=paper_preview&mkt=zh-cn
    [4] CHARBONNIER LM, CUI Y, STEPHEN-VICTOR E, et al. Functional reprogramming of regulatory T cells in the absence of Foxp3[J]. Nat Immunol, 2019, 20(9):1208-1219. DOI: 10.1038/s41590-019-0442-x.
    [5] MOHD ASHARI NS, MOHAMED SANUSI SNF, MOHD YASIN MA, et al. Major depressive disorder patients on antidepressant treatments display higher number of regulatory T cells[J]. Malays J Pathol, 2019, 41(2):169-176.
    [6] TERZIEVA V, MIHOVA A, ALTANKOVA I, et al. The dynamic changes in soluble CD30 and regulatory T cells before and after solid organ transplantations: a pilot study[J]. Monoclon Antib Immunodiagn Immunother, 2019, 38(4):137-144. DOI: 10.1089/mab.2019.0010.
    [7] CAMMARATA I, MARTIRE C, CITRO A, et al. Counter-regulation of regulatory T cells by autoreactive CD8+ T cells in rheumatoid arthritis[J]. J Autoimmun, 2019, 99:81-97. DOI: 10.1016/j.jaut.2019.02.001.
    [8] ALLOS H, AL DULAIJAN BS, CHOI J, et al. Regulatory T cells for more targeted immunosuppressive therapies[J]. Clin Lab Med, 2019, 39(1):1-13. DOI: 10.1016/j.cll.2018.11.001.
    [9] WU KK, HUAN Y. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc Pharmacol, 2008, 40(1):5.47.1-5.47.14. DOI: 10.1002/0471141755.ph0547s40.
    [10] ZMUDA EJ, POWELL CA, HAI T. A method for murine islet isolation and subcapsular kidney transplantation[J]. J Vis Exp, 2011(50): 2096. DOI: 10.3791/2096.
    [11] LU Y, DANG H, MIDDLETON B, et al. Bioluminescent monitoring of islet graft survival after transplantation[J]. Mol Ther, 2004, 9(3):428-435. doi: 10.1016/j.ymthe.2004.01.008
    [12] LABLANCHE S, VANTYGHEM MC, KESSLER L, et al. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial[J]. Lancet Diabetes Endocrinol, 2018, 6(7):527-537. DOI: 10.1016/S2213-8587(18)30078-0.
    [13] NIJHOFF MF, DUBBELD J, VAN ERKEL AR, et al. Islet alloautotransplantation: allogeneic pancreas transplantation followed by transplant pancreatectomy and islet transplantation[J]. Am J Transplant, 2018, 18(4): 1016-1019. DOI: 10.1111/ajt.14593.
    [14] BRENNAN DC, KOPETSKIE HA, SAYRE PH, et al. Long-term follow-up of the edmonton protocol of islet transplantation in the United States[J]. Am J Transplant, 2016, 16(2):509-517. DOI: 10.1111/ajt.13458.
    [15] FARNEY AC, SUTHERLAND DE, OPARA EC. Evolution of islet transplantation for the last 30 years[J]. Pancreas, 2016, 45(1):8-20. DOI: 10.1097/MPA.0000000000000391.
    [16] SONG JL, LI M, YAN LN, et al. Higher tacrolimus blood concentration is related to increased risk of post-transplantation diabetes mellitus after living donor liver transplantation[J]. Int J Surg, 2018, 51:17-23. DOI: 10.1016/j.ijsu.2017.12.037.
    [17] PATHIRAJA V, VILLANI V, TASAKI M, et al. Tolerance of vascularized islet-kidney transplants in Rhesus monkeys[J]. Am J Transplant, 2017, 17(1):91-102. DOI: 10.1111/ajt.13952.
    [18] KANJANA K, PAISOOKSANTIVATANA K, MATANGKASOMBUT P, et al. Efficient short-term expansion of human peripheral blood regulatory T cells for co-culture suppression assay[J]. J Immunoassay Immunochem, 2019:1-17. DOI: 10.1080/15321819.2019.1659813.
    [19] LEVINE AG, MENDOZA A, HEMMERS S, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet[J]. Nature, 2017, 546(7658):421-425. DOI: 10.1038/nature22360.
    [20] WANG S, FAN T, YAO L, et al. Circulating follicular regulatory T cells could inhibit Ig production in a CTLA-4-dependent manner but are dysregulated in ulcerative colitis[J]. Mol Immunol, 2019, 114:323-329. DOI: 10.1016/j.molimm.2019.08.006.
    [21] IAMSAWAT S, DAENTHANASANMAK A, VOSS JH, et al. Stabilization of Foxp3 by targeting JAK2 enhances efficacy of CD8 induced regulatory T cells in the prevention of graft-versus-host disease[J]. J Immunol, 2018, 201(9):2812-2823. DOI: 10.4049/jimmunol.1800793.
    [22] KATAGIRI T, YAMAZAKI S, FUKUI Y, et al. JunB plays a crucial role in development of regulatory T cells by promoting IL-2 signaling[J]. Mucosal Immunol, 2019, 12(5):1104-1117. DOI: 10.1038/s41385-019-0182-0.
    [23] MENG ZJ, WU JH, ZHOU M, et al. Peripheral blood CD4+T cell populations by CD25 and Foxp3 expression as a potential biomarker: reflecting inflammatory activity in chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14:1669-1680. DOI: 10.2147/COPD.S208977.
    [24] MOLDENHAUER LM, SCHJENKEN JE, HOPE CM, et al. Thymus-derived regulatory T cells exhibit Foxp3 epigenetic modification and phenotype attenuation after mating in mice[J]. J Immunol, 2019, 203(3):647-657. DOI: 10.4049/jimmunol.1900084.
    [25] BEERMANN JL, THIESLER CT, DRINGENBERG U, et al. Migratory properties of ex vivo expanded regulatory T cells: influence of all-trans retinoic acid and rapamycin[J]. Transpl Immunol, 2017, 45:29-34. DOI: 10.1016/j.trim.2017.08.005.
    [26] BLUESTONE JA, TANG Q. Treg cells-the next frontier of cell therapy[J]. Science, 2018, 362(6411):154-155. DOI: 10.1126/science.aau2688.
    [27] SORATHIA N, AL-RUBAYE H, ZAL B. The effect of statins on the functionality of CD4 +CD25 +Foxp3+regulatory T-cells in acute coronary syndrome: a systematic review and Meta-analysis of randomised controlled trials in Asian populations[J]. Eur Cardiol, 2019, 14(2):123-129. DOI: 10.15420/ecr.2019.9.2.
    [28] MCDONALD-HYMAN C, MULLER JT, LOSCHI M, et al. The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease[J]. J Clin Invest, 2018, 128(10):4604-4621. DOI: 10.1172/JCI95713.
    [29] AGLE K, VINCENT BG, PIPER C, et al. Bim regulates the survival and suppressive capability of CD8+ Foxp3+ regulatory T cells during murine GVHD[J]. Blood, 2018, 132(4):435-447. DOI: 10.1182/blood-2017-09-807156.
    [30] MAREK-TRZONKOWSKA N, MYSLIWIEC M, DOBYSZUK A, et al. Administration of CD4+CD25high CD127- regulatory T cells preserves β-cell function in type 1 diabetes in children[J]. Diabetes Care, 2012, 35(9):1817-1820. DOI: 10.2337/dc12-0038.
    [31] DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn' s disease[J]. Gastroenterology, 2012, 143(5):1207-1217. DOI: 10.1053/ j.gastro.2012.07.116.
    [32] WEIGERT O, VON SPEE C, UNDEUTSCH R, et al. CD4+Foxp3+regulatory T cells prolong drug-induced disease remission in (NZBxNZW) F1 lupus mice[J]. Arthritis Res Ther, 2013, 15(1):R35. DOI: 10.1186/ar4188.
    [33] BETTS BC, PIDALA J, KIM J, et al. IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation[J]. Haematologica, 2017, 102(5):948-957. DOI: 10.3324/haematol.2016.153072.
    [34] TKACHEV V, FURLAN SN, WATKINS B, et al. Combined OX40L and mTOR blockade controls effector T cell activation while preserving Treg reconstitution after transplant[J]. Sci Transl Med, 2017, 9(408). DOI: 10.1126/scitranslmed.aan3085.
  • 加载中
图(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  52
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-21
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回