留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噬菌体在实体器官移植中的应用

吴楠楠 朱同玉

吴楠楠, 朱同玉. 噬菌体在实体器官移植中的应用[J]. 器官移植, 2019, 10(4): 410-415. doi: 10.3969/j.issn.1674-7445.2019.04.010
引用本文: 吴楠楠, 朱同玉. 噬菌体在实体器官移植中的应用[J]. 器官移植, 2019, 10(4): 410-415. doi: 10.3969/j.issn.1674-7445.2019.04.010

噬菌体在实体器官移植中的应用

doi: 10.3969/j.issn.1674-7445.2019.04.010
基金项目: 

国家自然科学基金面上项目 81873621

上海市卫计委卫生行业临床研究专项青年项目 20184Y0274

详细信息
    作者简介:

    吴楠楠,男,1986年生,博士,助理研究员,研究方向为病毒学,Email:wunannan@shphc.org.cn

    朱同玉,主任医师、教授、博士研究生导师,现任上海市公共卫生临床中心院长,复旦大学附属中山医院副院长,上海市器官移植重点实验室主任,上海噬菌体与耐药研究所所长。兼任上海医学会器官移植分会主任委员,中国医师协会器官移植分会常委,美国密西西比大学客座教授。担任《Am J Transplant(中文版)》杂志副主编,《器官移植》杂志常务编委,《Int J Clin Pract》、《中华器官移植杂志》、《国际移植与血液净化杂志》等杂志编委,担任《New Engl J Med》、《Am J Transplant》、《Transplantation》、《J Clin Bioinforma》等杂志审稿专家。长期从事肾移植临床及研究工作,近年来对移植术后的感染防控尤为关注,2018年起主持国内首个噬菌体治疗超级耐药细菌感染临床试验。在《Cell Death Dis》、《Emerg Microbes Infect》、《Transplantation》、《Nat Immunol》、《Blood》、《Leukemia Res》等杂志发表学术论文200余篇。荣获上海市医学领军人才、上海市优秀学科带头人、上海市领军人才等荣誉

    通讯作者:

    朱同玉,男,1966年生,博士,教授,主任医师,研究方向为肾移植与泌尿外科,Email:tyzhu@fudan.edu.cn

  • 中图分类号: R617, Q939.48

  • 摘要: 耐药细菌感染是当前人类面临的共同威胁。对于器官移植受者来说,围手术期面临着细菌院内感染的威胁,术后免疫抑制也给耐药细菌感染提供了可乘之机。但新型抗生素筛选速度远远滞后于细菌的变异速度,传统抗生素疗法已无法满足临床应对超级耐药细菌的需求,拥有百年历史的噬菌体疗法重新回到人们的视野。噬菌体可用于预防、诊断和治疗超级细菌感染,在器官移植领域有很大的应用空间。

     

  • [1] THACKER PD. Set a microbe to kill a microbe: drug resistance renews interest in phage therapy[J]. JAMA, 2003, 290(24):3183-3185. DOI: 10.1001/jama.290.24.3183.
    [2] SUMMERS WC. Bacteriophage therapy[J]. Annu Rev Microbiol, 2001, 55:437-451. doi: 10.1146/annurev.micro.55.1.437
    [3] 安瑞.噬菌体治疗的前世、今生与未来——对话微生物学界噬菌体专家[J].科学通报, 2017, 62(23):2577-2580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201723001

    AN R. Phage-based and future:dialogue bacteriophage expert in microbiology[J].Chin Sci Bulletin, 2017, 62(23):2577-2580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201723001
    [4] BOUCHER HW, TALBOT GH, BRADLEY JS, et al. Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America[J]. Clin Infect Dis, 2009, 48(1):1-12. DOI: 10.1086/595011.
    [5] SUAY-GARCÍA B, PÉREZ-GRACIA MT. Future prospects for neisseria gonorrhoeae treatment[J]. Antibiotics (Basel), 2018, 7(2): E49. DOI: 10.3390/antibiotics7020049.
    [6] RHOADS DD, WOLCOTT RD, KUSKOWSKI MA, et al. Bacteriophage therapy of venous leg ulcers in humans: results of a phase Ⅰ safety trial[J]. J Wound Care, 2009, 18(6):237-238, 240-243. doi: 10.12968/jowc.2009.18.6.42801
    [7] WRIGHT A, HAWKINS CH, ANGGÅRD EE, et al.A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant pseudomonas aeruginosa; a preliminary report of efficacy[J]. Clin Otolaryngol, 2009, 34(4):349-357. DOI: 10.1111/j.1749-4486.2009.01973.x.
    [8] JAULT P, LECLERC T, JENNES S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial[J]. Lancet Infect Dis, 2019, 19(1):35-45. DOI: 10.1016/S1473-3099(18)30482-1.
    [9] SARKER SA, MCCALLIN S, BARRETTO C, et al. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh[J]. Virology, 2012, 434(2):222-232. DOI: 10.1016/j.virol.2012.09.002.
    [10] SARKER SA, SULTANA S, REUTELER G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh[J]. EBioMedicine, 2016, 4:124-137. DOI: 10.1016/j.ebiom.2015.12.023.
    [11] SARKER SA, BERGER B, DENG Y, et al. Oral application of escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh[J]. Environ Microbiol, 2017, 19(1):237-250. DOI: 10.1111/1462-2920.13574.
    [12] 首例超级细菌感染患者经噬菌体治疗痊愈[EB/OL].(2018-08-15).http://www.sh.chinanews.com/yljk/2018-08-15/43418.shtml.
    [13] LEE KC, JOORY K, MOIEMEN NS. History of burns: the past, present and the future[J]. Burns Trauma, 2014, 2(4):169-180. DOI: 10.4103/2321-3868.143620.
    [14] BARTOLETTI M, GIANNELLA M, TEDESCHI S, et al. Multidrug-resistant bacterial infections in solid organ transplant candidates and recipients[J]. Infect Dis Clin North Am, 2018, 32(3):551-580. DOI: 10.1016/j.idc.2018.04.004.
    [15] FLORESCU DF, MCCARTNEY AM, QIU F, et al. Staphylococcus aureus infections after liver transplantation[J]. Infection, 2012, 40(3):263-269. DOI: 10.1007/s15010-011-0224-3.
    [16] SHIELDS RK, CLANCY CJ, MINCES LR, et al. Staphylococcus aureus infections in the early period after lung transplantation: epidemiology, risk factors, and outcomes[J]. J Heart Lung Transplant, 2012, 31(11):1199-1206. DOI: 10.1016/j.healun.2012.08.012.
    [17] GIANNELLA M, BARTOLETTI M, MORELLI MC, et al. Risk factors for infection with carbapenem-resistant Klebsiella pneumoniae after liver transplantation: the importance of pre- and posttransplant colonization[J]. Am J Transplant, 2015, 15(6):1708-1715. DOI: 10.1111/ajt.13136.
    [18] FREIRE MP, OSHIRO IC, PIERROTTI LC, et al. Carbapenem-resistant enterobacteriaceae acquired before liver transplantation: impact on recipient outcomes[J]. Transplantation, 2017, 101(4):811-820.DOI: 10.1097/TP.0000000000001620.
    [19] MCDERMOTT H, SKALLY M, O'ROURKE J, et al. Vancomycin-resistant enterococci (VRE) in the intensive care unit in a nonoutbreak setting: identification of potential reservoirs and epidemiological associations between patient and environmental VRE[J]. Infect Control Hosp Epidemiol, 2018, 39(1):40-45. DOI: 10.1017/ice.2017.248.
    [20] KAMPMEIER S, KOSSOW A, CLAUSEN LM, et al. Hospital acquired vancomycin resistant enterococci in surgical intensive care patients-a prospective longitudinal study[J]. Antimicrob Resist Infect Control, 2018, 7:103. DOI: 10.1186/s13756-018-0394-1.
    [21] BANACH DB, PEAPER DR, FORTUNE BE, et al. The clinical and molecular epidemiology of pre-transplant vancomycin-resistant enterococci colonization among liver transplant recipients[J]. Clin Transplant, 2016, 30(3):306-311. DOI: 10.1111/ctr.12690.
    [22] TIMSIT JF, BASSETTI M, CREMER O, et al. Rationalizing antimicrobial therapy in the ICU:a narrative review[J]. Intensive Care Med, 2019, 45(2):172-189. DOI: 10.1007/s00134-019-05520-5.
    [23] BODRO M, SABÉ N, TUBAU F, et al. Extensively drug-resistant pseudomonas aeruginosa bacteremia in solid organ transplant recipients[J]. Transplantation, 2015, 99(3):616-622. DOI: 10.1097/TP.0000000000000366.
    [24] LIU T, ZHANG Y, WAN Q. Pseudomonas aeruginosa bacteremia among liver transplant recipients[J]. Infect Drug Resist, 2018, 11:2345-2356. DOI: 10.2147/IDR.S180283.
    [25] AGUIAR EB, MACIEL LC, HALPERN M, et al. Outcome of bacteremia caused by extended-spectrum β-lactamase-producing enterobacteriaceae after solid organ transplantation[J]. Transplant Proc, 2014, 46(6):1753-1756. DOI: 10.1016/j.transproceed.2014.05.003.
    [26] ESPINAR MJ, MIRANDA IM, COSTA-DE-OLIVEIRA S, et al. Urinary tract infections in kidney transplant patients due to escherichia coli and Klebsiella pneumoniae-producing extended-spectrum β-lactamases: risk factors and molecular epidemiology[J].PLoS One, 2015, 10(8):e0134737. DOI: 10.1371/journal.pone.0134737.
    [27] BAKTASH A, TERVEER EM, ZWITTINK RD, et al. Mechanistic insights in the success of fecal microbiota transplants for the treatment of clostridium difficile infections[J]. Front Microbiol, 2018, 9:1242. DOI: 10.3389/fmicb.2018.01242.
    [28] BOODMAN E. To save a young woman besieged by superbugs, scientists hunt a killer virus [EB/OL]. (2017-11-10). https://www.statnews.com/2017/11/10/superbug-phage-mallory-smith.
    [29] BOODMAN E. A patient's legacy: researchers work to make phage therapy less of a long shot [EB/OL]. (2017-11-28).https://www.statnews.com/2017/11/28/phage-therapy-mallory-smith.
    [30] ASLAM S YG, DAN J, REED S, et al. 373 - bacteriophage treatment in a lung transplant recipient in: 38th Annual International Society for Heart & Lung Transplantation (ISHLT) Meeting & Scientific Sessions, April 13, 2018[C]. France : Nice, 2018.
    [31] HO YH, TSENG CC, WANG LS, et al. Application of bacteriophage-containing aerosol against nosocomial transmission of carbapenem-resistant acinetobacter baumannii in an intensive care unit[J]. PLoS One, 2016, 11(12):e0168380. DOI: 10.1371/journal.pone.0168380.
    [32] GÓRSKI A, DĄBROWSKA K, MIĘDZYBRODZKI R, et al. Phages and immunomodulation[J]. Future Microbiol, 2017, 12:905-914. DOI: 10.2217/fmb-2017-0049.
    [33] ALIBERTI S, REYES LF, FAVERIO P, et al. Global initiative for meticillin-resistant staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study[J]. Lancet Infect Dis, 2016, 16(12):1364-1376. DOI: 10.1016/S1473-3099(16)30267-5.
    [34] LO DK, MUHLEBACH MS, SMYTH AR. Interventions for the eradication of meticillin-resistant staphylococcus aureus (MRSA) in people with cystic fibrosis[J]. Cochrane Database Syst Rev, 2018, 7:CD009650.DOI: 10.1002/14651858.CD009650.pub4.
    [35] RODRÍGUEZ-SEVILLA G, GARCÍA-COCA M, ROMERA-GARCÍA D, et al. Non-tuberculous mycobacteriamultispecies biofilms in cystic fibrosis: development of an in vitro mycobacterium abscessus and pseudomonas aeruginosa dual species biofilm model[J]. Int J Med Microbiol, 2018, 308(3):413-423.DOI: 10.1016/j.ijmm.2018.03.003.
    [36] GRANCHELLI AM, ADLER FR, KEOGH RH, et al. Microbial interactions in the cystic fibrosis airway[J]. J Clin Microbiol, 2018, 56(8):e00354-e00318. DOI: 10.1128/JCM.00354-18.
    [37] ARROYO V, MOREAU R, KAMATH PS, et al. Acute-on-chronic liver failure in cirrhosis[J]. Nat Rev Dis Primers, 2016, 2:16041. DOI: 10.1038/nrdp.2016.41.
    [38] EKSER B, MANGUS RS. Spontaneous bacterial peritonitis[J]. Lancet, 2017, 389(10070):735. DOI: 10.1016/S0140-6736(16)30782-6.
    [39] BLAIR BM. Safe living following solid organ transplantation[J]. Surg Clin North Am, 2019, 99(1):153-161. DOI: 10.1016/j.suc.2018.09.011.
    [40] PENG H, CHEN IA. Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages[J]. ACS Nano, 2019, 13(2):1244-1252. DOI: 10.1021/acsnano.8b06395.
    [41] YUE H, HE Y, FAN E, et al. Label-free electrochemiluminescent biosensor for rapid and sensitive detection of pseudomonas aeruginosa using phage as highly specific recognition agent[J]. Biosens Bioelectron, 2017, 94:429-432.DOI: 10.1016/j.bios.2017.03.033.
    [42] HE Y, SHI Y, LIU M, et al. Nonlytic recombinant phage tail fiber protein for specific recognition of pseudomonas aeruginosa[J]. Anal Chem, 2018, 90(24):14462-14468. DOI: 10.1021/acs.analchem.8b04160.
    [43] FAROOQ U, YANG Q, ULLAH MW, et al. Bacterial biosensing: recent advances in phage-based bioassays and biosensors[J]. Biosens Bioelectron, 2018, 118:204-216. DOI: 10.1016/j.bios.2018.07.058.
    [44] BROGAN DM, MOSSIALOS E. A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility[J]. Global Health, 2016, 12:8. DOI: 10.1186/s12992-016-0147-y.
    [45] KILCHER S, LOESSNER MJ. Engineering bacteriophages as versatile biologics[J]. Trends Microbiol, 2019, 27(4):355-367. DOI: 10.1016/j.tim.2018.09.006.
  • 加载中
计量
  • 文章访问数:  193
  • HTML全文浏览量:  239
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回