留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五指山小型猪近交系异种移植产业化研发进展

冯书堂 戴一凡 章金刚 潘志强

冯书堂, 戴一凡, 章金刚, 等. 五指山小型猪近交系异种移植产业化研发进展[J]. 器官移植, 2018, 9(6): 469-473. doi: 10.3969/j.issn.1674-7445.2018.06.014
引用本文: 冯书堂, 戴一凡, 章金刚, 等. 五指山小型猪近交系异种移植产业化研发进展[J]. 器官移植, 2018, 9(6): 469-473. doi: 10.3969/j.issn.1674-7445.2018.06.014

五指山小型猪近交系异种移植产业化研发进展

doi: 10.3969/j.issn.1674-7445.2018.06.014
基金项目: 

国家重点研发计划重点专项 2017YFC11037000

国家重点研发计划重点专项 2017YFD0501606

详细信息
    通讯作者:

    冯书堂,男,1945年生,1975年至2015年于中国农业科学院北京畜牧兽医研究所从事畜牧科学研究,研究员,博士研究生导师,2016年至今于北京市盖兰德科技公司任名誉董事长、首席科学家,主要从事动物繁育技术和实验用小型猪近交系培育与产业化研发,Email:fst508@sina.com

  • 中图分类号: R617, S828

  • 摘要: 为了早日实现五指山小型猪(WZSP)近交系异种移植产业化目标,努力推进近交繁育获得近交系,同时开展克服异种移植免疫排斥和猪内源性逆转录病毒(PERV)传染生物安全性两大难题的研发内容。本文从WZSP近交系双基因敲除克隆猪繁育成功、猪-猴异种角膜内皮移植取得突破性进展、WZSP近交系PERV无传染性群体建立、WZSP近交系是理想的动物模型和异种移植供体等方面,介绍WZSP近交系异种移植产业化的研发进展。

     

  • 图  1  GGTA1/β4GalNT2双基因敲除猪的生长发育情况

    Figure  1.  Growth and development of GGTA1/β4GalNT2 double gene knockout pigs

    图  2  WZSP近交系-恒河猴板层角膜移植成功

    图示不同观察时间板层角膜移植术后植片均保持透明

    Figure  2.  Lamellar corneal transplantation of WZSP inbred line-Rhesus Monkey

    图  3  初步筛选与确证实验的技术路线

    HEK293细胞为人胚胎肾细胞; PBMC为外周血单核细胞

    Figure  3.  Technical route of preliminary screening and confirming experiment

    表  1  中国小型猪体内PERV的检测与筛查结果[21]

    Table  1.   Detection and screening result of PERV in miniature pigs in China

    品系 产地 n PERV亚型感染(只)
    A B C
    版纳小型猪 云南省 16 8 15 5
    贵州小型猪 贵州省 36 18 32 9
    剑河香猪 贵州省 20 11 19 15
    巴马小型猪 广西省 101 87 98 21
    巴马香猪 广西省 12 12 12 9
    巴马香猪 上海 28 6 27 19
    巴马香猪 重庆 20 16 20 17
    贵州小型猪 重庆 22 18 20 9
    农大小型猪 北京 26 18 26 2
    五指山小型猪 北京 67 65 63 0
    下载: 导出CSV
  • [1] DAI Y, VAUGHT TD, BOONE J, et al. Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs[J]. Nat Biotechnol, 2002, 20(3): 251-255. doi: 10.1038/nbt0302-251
    [2] LAI L, KOLBER-SIMONDS D, PARK KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092. doi: 10.1126/science.1068228
    [3] DUQUESNOY RJ, 李幼平.移植免疫生物学[M].北京:科学出版社, 2000: 617-618.
    [4] ESTRADA JL, MARTENS G, LI P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J]. Xenotransplantation, 2015, 22(3): 194-202. DOI: 10.1111/xen.12161.
    [5] HIGGINBOTHAM L, MATHEWS D, BREEDEN CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model[J]. Xenotransplantation, 2015, 22(3): 221-230. DOI: 10.1111/xen.12166.
    [6] MOHIUDDIN MM, SINGH AK, CORCORAN PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7: 11138. DOI: 10.1038/ncomms11138.
    [7] VAN DER WINDT DJ, BOTTINO R, CASU A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets[J]. Am J Transplant, 2009, 9(12): 2716-2726. DOI: 10.1111/j.1600-6143.2009.02850.x.
    [8] SHAH JA, NAVARRO-ALVAREZ N, DEFAZIO M, et al. A bridge to somewhere: 25-day survival after pig-to-baboon liver xenotransplantation[J]. Ann Surg, 2016, 263(6): 1069-1071. DOI: 10.1097/SLA.0000000000001659.
    [9] LAIRD C, BURDORF L, PIERSON RN 3RD. Lung xenotransplantation: a review[J]. Curr Opin Organ Transplant, 2016, 21(3): 272-278. DOI: 10.1097/MOT.0000000000000311.
    [10] YANG L, GÜELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264): 1101-1104. DOI: 10.1126/science.aad1191.
    [11] NIU D, WEI HJ, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. DOI: 10.1126/science.aan4187.
    [12] FANG X, MOU Y, HUANG Z, et al. The sequence and analysis of a Chinese pig genome[J]. Gigascience, 2012, 1(1):16. DOI: 10.1186/2047-217X-1-16.
    [13] MU YL, LIU L, FENG ST, et al. Identification of the miniature pig inbred line by skin allograft[J]. J Integr Agricul, 2015, 14(7): 1376-1382. DOI: 10.1016/S2095-3119(14)60976-X.
    [14] FENG ST, ZHANG XL, WANG TP. The progress on cultivation and identification of the first Wuzhishan inbred mini-pig in China[J]. Agri Res Tech: Open Access J, 2017, 12(4): 555858. DOI: 10.19080/ARTOAJ.2017.12.555858.
    [15] 冯书堂, 高倩, 刘岚.哺乳动物近交系资源创新百年[J].遗传, 2016, 38(3): 181-195. DOI: 10.16288/j.yczz.15-430.

    FENG ST, GAO Q, LIU L. Resources of mammalian inbred lines have been innovating for 100 years[J]. Hereditas, 2016, 38(3): 181-195. DOI: 10.16288/j.yczz.15-430.
    [16] ZHIQIANG P, CUN S, YING J, et al. WZS-pig is a potential donor alternative in corneal xenotransplantation[J]. Xenotransplantation, 2007, 14(6): 603-611. doi: 10.1111/xen.2007.14.issue-6
    [17] LI A, PAN Z, JIE Y, et al. Comparison of immunogenicity and porcine-to-rhesus lamellar corneal xenografts survival between fresh preserved and dehydrated porcine corneas[J]. Xenotransplantation, 2011, 18(1): 46-55. DOI: 10.1111/j.1399-3089.2011.00626.x.
    [18] LIU Y, ZHANG Y, LIANG Q, et al. Porcine endothelial grafts could survive for a long term without using systemic immunosuppressors: an investigation of feasibility and efficacy of xeno-Descemet's stripping automated endothelial keratoplasty from WZS-pig to rhesus monkey[J]. Xenotransplantation, 2018: e12433. DOI: 10.1111/xen.12433.
    [19] PATIENCE C, TAKEUCHI Y, WEISS RA. Infection of human cells by an endogenous retrovirus of pigs[J]. Nat Med, 1997, 3(3): 282-286. doi: 10.1038/nm0397-282
    [20] 冯书堂, 马玉媛, 夏颖.中国小型猪内源性反转录病毒研究进展与对策[J].中国畜牧兽医, 2017, 44(4): 1244-1248. DOI: 10.16431/j.cnki.1671-7236.2017.04.043.

    FENG ST, MA YY, XIA Y. Research progress and countermeasures of porcine endogenous retrovirus in Chinese miniature[J]. Chin Anim Husb Vet Med, 2017, 44(4): 1244-1248. DOI: 10.16431/j.cnki.1671-7236.2017.04.043.
    [21] WU J, MA Y, LV M, et al. Large-scale survey of porcine endogenous retrovirus in Chinese miniature pigs[J]. Comp Immunol Microbiol Infect Dis, 2008, 31(4): 367-371. doi: 10.1016/j.cimid.2007.06.004
    [22] ALBL B, HAESNER S, BRAUN-REICHHART C, et al. Tissue sampling guides for porcine biomedical models[J]. Toxicol Pathol, 2016, 44(3): 414-420. DOI: 10.1177/0192623316631023.
    [23] 冯书堂, 李奎, 刘岚, 等.小型猪近交系新品种的培育与开发利用[J].农业生物技术学报, 2015, 23(2): 274-280. DOI: 10.3969/j.issn.1674-7968.2015.02.016.

    FENG ST, LI K, LIU L, et al. Cultivation and application of miniature pig (sus scrofa) inbred[J]. J Agricult Biotechnol, 2015, 23(2): 274-280. DOI: 10.3969/j.issn.1674-7968.2015.02.016.
    [24] ZHAO Y, XIANG L, LIU Y, et al. Atherosclerosis induced by a high-cholesterol and high-fat diet in the inbred strain of the Wuzhishan miniature pig[J]. Anim Biotechnol, 2018, 29(2): 110-118. DOI: 10.1080/10495398.2017.1322974.
    [25] 冯书堂.中国实验用小型猪[M].北京:中国农业出版社, 2011.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  124
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-16
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回