留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线粒体自噬在肾缺血-再灌注损伤中的作用

王天宇 周江桥

王天宇, 周江桥. 线粒体自噬在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2018, 9(3): 239-241. doi: 10.3969/j.issn.1674-7445.2018.03.014
引用本文: 王天宇, 周江桥. 线粒体自噬在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2018, 9(3): 239-241. doi: 10.3969/j.issn.1674-7445.2018.03.014

线粒体自噬在肾缺血-再灌注损伤中的作用

doi: 10.3969/j.issn.1674-7445.2018.03.014
基金项目: 

国家自然科学基金青年基金项目 81400753

详细信息
    作者简介:

    王天宇,男,1993年生,住院医师,研究方向为肾缺血-再灌注机制,Email:403391473@qq.com

    通讯作者:

    周江桥,男,1965年生,博士,主任医师,研究方向为肾缺血-再灌注机制,Email:zhoujq@whu.edu.cn

  • 中图分类号: R617

  • 摘要: 线粒体自噬是机体选择性清除受损线粒体的防御性过程,对维持细胞生存有重要意义。一般情况下线粒体自噬阈值较低,当处在能量耗竭、缺血、缺氧等环境中时,线粒体自噬可被激活。肾脏的缺血-再灌注损伤(IRI)是临床中较为常见的病理生理过程,是导致急性肾损伤的主要原因。目前认为IRI与氧化应激、线粒体功能紊乱、自噬和凋亡等密切相关。本文就线粒体自噬的概述、线粒体自噬在肾IRI中的作用以及线粒体自噬的调控进行综述,为临床中防治肾IRI提供新的研究思路。

     

  • [1] GOTTLIEB RA, FINLEY KD, MENTZER RM JR. Cardioprotection requires taking out the trash[J]. Basic Res Cardiol, 2009, 104(2): 169-180. DOI: 10.1007/s00395-009-0011-9.
    [2] ASHFORD TP, PORTER KR. Cytoplasmic components in hepatic cell lysosomes[J]. J Cell Biol, 1962, 12: 198-202. doi: 10.1083/jcb.12.1.198
    [3] CHIEN CT, SHYUE SK, LAI MK. Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy[J]. Transplantation, 2007, 84(9): 1183-1190. doi: 10.1097/01.tp.0000287334.38933.e3
    [4] PALLET N, LIVINGSTON M, DONG Z. Emerging functions of autophagy in kidney transplantation[J]. Am J Transplant, 2014, 14(1): 13-20. DOI: 10.1111/ajt.12533.
    [5] LEMASTERS JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5. doi: 10.1089/rej.2005.8.3
    [6] PETIOT A, OGIER-DENIS E, BLOMMAART EF, et al. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells[J]. J Biol Chem, 2000, 275(2): 992-998. doi: 10.1074/jbc.275.2.992
    [7] KIM Y, PARK J, KIM S, et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation[J]. Biochem Biophys Res Commun, 2008, 377(3): 975-980. DOI: 10.1016/j.bbrc.2008.10.104.
    [8] PARZYCH KR, KLIONSKY DJ. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxid Redox Signal, 2014, 20(3): 460-473. DOI: 10.1089/ars.2013.5371.
    [9] MANI S, CAO W, WU L, et al. Hydrogen sulfide and the liver[J]. Nitric Oxide, 2014, 41: 62-71. DOI: 10.1016/j.niox.2014.02.006.
    [10] NICHOLSON CK, CALVERT JW. Hydrogen sulfide and ischemiareperfusion injury[J]. Pharmacol Res, 2010, 62(4): 289-297. DOI: 10.1016/j.phrs.2010.06.002.
    [11] ISHIHARA M, URUSHIDO M, HAMADA K, et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury[J]. Am J Physiol Renal Physiol, 2013, 305(4): F495-F509. DOI: 10.1152/ajprenal.00642.2012.
    [12] INOUE K, KUWANA H, SHIMAMURA Y, et al. Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo[J]. Clin Exp Nephrol, 2010, 14(2): 112-122. DOI: 10.1007/s10157-009-0254-7.
    [13] HUNG CM, GARCIA-HARO L, SPARKS CA, et al. mTOR-dependent cell survival mechanisms[J]. Cold Spring Harb Perspect Biol, 2012, 4(12): a008771. DOI: 10.1101/cshperspect.a008771.
    [14] JIANG M, WEI Q, DONG G, et al. Autophagy in proximal tubules protects against acute kidney injury[J]. Kidney Int, 2012, 82(12): 1271-1283. DOI: 10.1038/ki.2012.261.
    [15] WU HH, HSIAO TY, CHIEN CT, et al. Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat[J]. J Biomed Sci, 2009, 16:19. DOI: 10.1186/1423-0127-16-19.
    [16] CHEN CH, BUDAS GR, CHURCHILL EN, et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J]. Science, 2008, 321(5895): 1493-1495. DOI: 10.1126/science.1158554.
    [17] CHEN BL, WANG LT, HUANG KH, et al. Quercetin attenuates renal ischemia/reperfusion injury via an activation of AMP-activated protein kinase-regulated autophagy pathway[J]. J Nutr Biochem, 2014, 25(11): 1226-1234. DOI: 10.1016/j.jnutbio.2014.05.013.
    [18] ZHANG H, BOSCH-MARCE M, SHIMODA LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem, 2008, 283(16): 10892-10903. DOI: 10.1074/jbc.M800102200.
    [19] CUI J, SHI S, SUN X, et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys[J]. PLoS One, 2013, 8(7): e69720. DOI: 10.1371/journal.pone.0069720.
    [20] INATA Y, KIKUCHI S, SAMRAJ RS, et al. Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway[J]. FASEB J, 2018, 32(2): 728-741. DOI: 10.1096/fj.201700576R.
    [21] 赵坤, 叶小鸣.自噬与肝移植的研究进展[J].器官移植, 2015, 6(3): 206-208. DOI: 10.3969/j.issn.1674-7445.2015.03.016.

    ZHAO K, YE XM. Advances on the relationship between autophagy and liver transplantation[J]. Organ Transplant, 2015, 6(3): 206-208. DOI: 10.3969/j.issn.1674-7445.2015.03.016.
    [22] XIE Y, XIAO J, FU C, et al. Ischemic preconditioning promotes autophagy and alleviates renal ischemia/reperfusion injury[J]. Biomed Res Int, 2018:8353987. DOI: 10.1155/2018/8353987.
    [23] XIE Y, JIANG D, XIAO J, et al. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway[J]. Cell Death Dis, 2018, 9(3):338. DOI: 10.1038/s41419-018-0358-7.
    [24] PU T, LIAO XH, SUN H, et al. Augmenter of liver regeneration regulates autophagy in renal ischemia-reperfusion injury via the AMPK/mTOR pathway[J]. Apoptosis, 2017, 22(7):955-969. DOI: 10.1007/s10495-017-1370-6.
    [25] SUN H, ZOU S, CANDIOTTI KA, et al. Octreotide attenuates acute kidney injury after hepatic ischemia and reperfusion by enhancing autophagy[J]. Sci Rep, 2017, 7:42701. DOI: 10.1038/srep42701.
    [26] KAUSHAL GP, SHAH SV. Autophagy in acute kidney injury[J]. Kidney Int, 2016, 89(4):779-791. DOI: 10.1016/j.kint.2015.11.021.
    [27] 李宁, 田炜, 郝志梅.自噬与缺血/再灌注损伤[J].广东医学, 2014, 35(2): 302-304. http://mall.cnki.net/magazine/Article/SHYY201402023.htm

    LI N, TIAN W, HAO ZM. Autophagy and ischemia/reperfusion injury[J]. Guangdong Med J, 2014, 35(2): 302-304. http://mall.cnki.net/magazine/Article/SHYY201402023.htm
    [28] 梁峻滔, 贾方园, 刘慧敏, 等. ALDH2双向调节线粒体自噬改善移植肾质量的研究进展[J].武汉大学学报(医学版), 2017, 38(6):881-885. DOI: 10.14188/j.1671-8852.2017.06.005.

    LIANG JT, JIA FY, LIU HM, et al. Research progress on ALDH2 improving the quality of renal allograft by bidirectional regulation of mitochondrial autophagy[J]. Med J Wuhan Univ, 2017, 38(6): 881-885. DOI: 10.14188/j.1671-8852.2017.06.005.
  • 加载中
计量
  • 文章访问数:  131
  • HTML全文浏览量:  17
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回