留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西罗莫司对异种动脉补片移植后的免疫调节作用研究

张青 周翠冰 王城军 蔡志明 牟丽莎

张青, 周翠冰, 王城军, 等. 西罗莫司对异种动脉补片移植后的免疫调节作用研究[J]. 器官移植, 2018, 9(3): 181-187. doi: 10.3969/j.issn.1674-7445.2018.03.003
引用本文: 张青, 周翠冰, 王城军, 等. 西罗莫司对异种动脉补片移植后的免疫调节作用研究[J]. 器官移植, 2018, 9(3): 181-187. doi: 10.3969/j.issn.1674-7445.2018.03.003
Zhang Qing, Zhou Cuibing, Wang Chengjun, et al. Study of immunoregulatory effect of sirolimus on xenotransplantaion with arterial patch[J]. ORGAN TRANSPLANTATION, 2018, 9(3): 181-187. doi: 10.3969/j.issn.1674-7445.2018.03.003
Citation: Zhang Qing, Zhou Cuibing, Wang Chengjun, et al. Study of immunoregulatory effect of sirolimus on xenotransplantaion with arterial patch[J]. ORGAN TRANSPLANTATION, 2018, 9(3): 181-187. doi: 10.3969/j.issn.1674-7445.2018.03.003

西罗莫司对异种动脉补片移植后的免疫调节作用研究

doi: 10.3969/j.issn.1674-7445.2018.03.003
基金项目: 

深圳市医疗卫生三名工程 SZSM201412020

深圳市科创委学科布局项目 JCYJ20160229204849975

深圳市高水平医学学科建设专项基金 2016031638

深圳市科技研发资金基础研究-自由探索 JCYJ20160425104534335

深圳市科创委企业工程中心项目 GCZX2015043017281705

详细信息
    作者简介:

    张青,女,1987年生,博士,博士后,研究方向为免疫抑制剂,Email:zhangqing7864@163.com

    通讯作者:

    牟丽莎,女,1983年生,博士,副研究员,研究方向为异种器官移植,Email:molly__molly@163.com

  • 中图分类号: R617, R392.4

Study of immunoregulatory effect of sirolimus on xenotransplantaion with arterial patch

More Information
  • 摘要:   目的  探讨西罗莫司在异种动脉补片移植中的免疫调节作用。  方法  选择野生型巴马猪至食蟹猴异种动脉补片移植手术后14 d受体猴的外周血单核细胞(POD14)为研究对象。设置二甲基亚砜(DMSO)对照组(体积比为1︰1 000)和西罗莫司实验组(终浓度为0.1 μmol/L和0.5 μmol/L),分别培养1.0 d和5.5 d,检测POD14细胞活性;设置DMSO对照组和西罗莫司实验组(终浓度为0.1 μmol/L),培养5.5 d,检测POD14细胞中T、B细胞的数量并检测细胞因子含量和信使核糖核酸(mRNA)表达水平。  结果  与DMSO对照组比较,终浓度为0.1 μmol/L和0.5 μmol/L的西罗莫司处理1.0 d后,POD14细胞活性降低( P < 0.01~0.001);终浓度为0.1 μmol/L和0.5 μmol/L的西罗莫司处理POD14细胞5.5 d后,POD14细胞活性均明显降低(均为 P < 0.001)。与DMSO对照组比较,西罗莫司(终浓度0.1 μmol/L)降低POD14细胞中CD3+CD4+ T细胞和CD3+CD8+ T细胞的数量( P < 0.05~0.01),而CD3-CD20+B细胞数量略有升高( P < 0.01)。与DMSO对照组比较,西罗莫司实验组的细胞因子干扰素(IFN)-γ、白细胞介素(IL)-2、IL-4、IL-5和IL-6含量均明显降低( P < 0.05~0.001);西罗莫司降低细胞因子IFN-γ、肿瘤坏死因子(TNF)-α、IL-2、IL-4、IL-5和IL-6的mRNA表达水平( P < 0.05~0.001)。  结论  西罗莫司抑制异种动脉补片移植术后受体猴POD14细胞的增殖,主要机制是降低T细胞数量和抑制免疫排斥相关细胞因子的表达和分泌。

     

  • 图  1  西罗莫司对POD14细胞活性的影响

    与DMSO对照组比较,a P < 0.01,b P < 0.001

    Figure  1.  The influence of sirolimus on the cell viability of POD14 cells

    图  2  西罗莫司对POD14细胞中T细胞和B细胞数量的影响

    与DMSO对照组比较,a P < 0.05,b P < 0.01

    Figure  2.  The influence of sirolimus on the counts of T cells and B cells in POD14 cells

    图  3  西罗莫司对POD14细胞因子的影响

    A图为两组POD14细胞因子平均荧光强度的流式细胞图;B图为两组POD14细胞因子含量的比较,与DMSO对照组比较,a P < 0.05,b P < 0.01,c P < 0.001;C图为两组POD14细胞因子mRNA表达水平的比较,与DMSO对照组比较,a P < 0.05,b P < 0.01,c P < 0.001

    Figure  3.  The influence of sirolimus on cytokines in POD 14 cells

  • [1] MARTINS PN, TULLIUS SG, MARKMANN JF. Immunosenescence and immune response in organ transplantation[J]. Int Rev Immunol, 2014, 33(3): 162- 173. DOI: 10.3109/08830185.2013.829469.
    [2] DE FIJTER JW. Cancer and mTOR inhibitors in transplant recipients[J]. Transplantation, 2017, 101(1):45-55. DOI: 10.1097/TP.0000000000001447.
    [3] LIM WH, ERIS J, KANELLIS J, et al. A systematic review of conversion from calcineurin inhibitor to mammalian target of rapamycin inhibitors for maintenance immunosuppression in kidney transplant recipients[J]. Am J Transplant, 2014, 14(9): 2106-2119. DOI: 10.1111/ajt.12795.
    [4] 赵成江, 叶学军, 陈姣, 等.食蟹猴腹主动脉补丁缝合术后的免疫排斥反应监测[J].器官移植, 2017, 8(2): 127-131. DOI: 10.3969/j.issn.1674-7445.2017.02.007.

    ZHAO CJ, YE XJ, CHEN J, et al. Monitoring of immune rejection after abdominal aortic patch suture in cynomolgus monkeys[J]. Organ Transplant, 2017, 8(2): 127-131. DOI: 10.3969/j.issn.1674-7445.2017.02.007.
    [5] COOPER DKC, PIERSON RN 3RD, HERING BJ, et al. Regulation of clinical xenotransplantation-time for a reappraisal[J]. Transplantation, 2017, 101(8): 1766- 1769. DOI: 10.1097/TP.0000000000001683.
    [6] PHELPS CJ, KOIKE C, VAUGHT TD, et al. Production of alpha 1, 3-galactosyltransferase-deficient pigs[J]. Science, 2003, 299(5605): 411-414. doi: 10.1126/science.1078942
    [7] KWON DN, LEE K, KANG MJ, et al. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs[J]. Sci Rep, 2013, 3: 1981. DOI: 10.1038/srep01981.
    [8] NIU D, WEI HJ, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. DOI: 10.1126/science.aan4187.
    [9] SCOBIE L, DENNER J, SCHUURMAN HJ. Inactivation of porcine endogenous retrovirus in pigs using CRISPRCas9, editorial commentary[J]. Xenotransplantation, 2017, 24(6). DOI: 10.1111/xen.12363.
    [10] COOPER DK, HARA H, EZZELARAB M, et al. The potential of genetically-engineered pigs in providing an alternative source of organs and cells for transplantation[J]. J Biomed Res, 2013, 27(4): 249-253. DOI: 10.7555/JBR.27.20130063.
    [11] KIM GA, LEE EM, JIN JX, et al. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs[J]. Transgenic Res, 2017, 26(4): 435-445. DOI: 10.1007/s11248-017-0021-6.
    [12] HOLT CD. Overview of immunosuppressive therapy in solid organ transplantation[J]. Anesthesiol Clin, 2017, 35(3): 365-380. DOI: 10.1016/j.anclin.2017.04.001.
    [13] ILYAS M, COLEGIO OR, KAPLAN B, et al. Cutaneous toxicities from transplantation-related medications[J]. Am J Transplant, 2017, 17(11): 2782-2789. DOI: 10.1111/ajt.14337.
    [14] EZZELARAB MB, EKSER B, ECHEVERRI G, et al. Costimulation blockade in pig artery patch xenotransplantation - a simple model to monitor the adaptive immune response in nonhuman primates[J]. Xenotransplantation, 2012, 19(4): 221-232. DOI: 10.1111/j.1399-3089.2012.00711.x.
    [15] DALLMAN MJ. Cytokines and transplantation: Th1/ Th2 regulation of the immune response to solid organ transplants in the adult[J]. Curr Opin Immunol, 1995, 7(5): 632-638. doi: 10.1016/0952-7915(95)80069-7
    [16] NICKERSON P, STEURER W, STEIGER J, et al. Cytokines and the Th1/Th2 paradigm in transplantation[J]. Curr Opin Immunol, 1994, 6(5): 757-764. doi: 10.1016/0952-7915(94)90081-7
    [17] ROSSI JF, LU ZY, JOURDAN M, et al. Interleukin-6 as a therapeutic target[J]. Clin Cancer Res, 2015, 21(6): 1248-1257. DOI: 10.1158/1078-0432.CCR-14-2291.
    [18] ZHANG W, HE J. Interleukin-6 is a key factor for immunoglobulin-like transcript-4-mediated immune injury in sepsis[J]. J Intensive Care, 2018, 6:22. DOI: 10.1186/s40560-018-0294-8.
    [19] CHAE MS, MOON KU, CHUNG HS, et al. Serum interleukin-6 and tumor necrosis factor-α are associated with early graft regeneration after living donor livertransplantation[J]. PLoS One, 2018, 13(4): e0195262. DOI: 10.1371/journal.pone.0195262.
    [20] VALPIONE S, PASQUALI S, CAMPANA LG, et al. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade[J]. J Transl Med, 2018, 16(1): 94. DOI: 10.1186/s12967-018- 1467-x.
    [21] G O M E Z - R O D R I G U E Z J, W O H L F E RT E A, HANDON R, et al. Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells[J]. J Exp Med, 2014, 211(3): 529-543. DOI: 10.1084/jem.20131459.
    [22] NAKAGIRI T, INOUE M, MINAMI M, et al. Immunology mini-review: the basics of T(H)17 and interleukin-6 in transplantation[J]. Transplant Proc, 2012, 44(4): 1035- 1040. DOI: 10.1016/j.transproceed.2011.12.032.
    [23] 秦建杰, 吕凌.白细胞介素17在器官移植排斥中的作用及机制[J].临床肝胆病杂志, 2012, 28(11): 812-814. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_lcgdbzz201211003

    QIN JJ, LYU L. The role and molecular mechanism of interleukin-17 in organ transplant rejection[J]. J Clin Hepatol, 2012, 28(11): 812-814. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_lcgdbzz201211003
  • 加载中
图(3)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  30
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-10
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回