留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MicroRNA在同种及异种移植免疫排斥监测中的研究进展及应用前景

林善 陆赢 蔡志明 戴一凡 牟丽莎

林善, 陆赢, 蔡志明, 等. MicroRNA在同种及异种移植免疫排斥监测中的研究进展及应用前景[J]. 器官移植, 2018, 9(3): 169-173. doi: 10.3969/j.issn.1674-7445.2018.03.001
引用本文: 林善, 陆赢, 蔡志明, 等. MicroRNA在同种及异种移植免疫排斥监测中的研究进展及应用前景[J]. 器官移植, 2018, 9(3): 169-173. doi: 10.3969/j.issn.1674-7445.2018.03.001

MicroRNA在同种及异种移植免疫排斥监测中的研究进展及应用前景

doi: 10.3969/j.issn.1674-7445.2018.03.001
基金项目: 

国家重点研发计划 2017YFC1103704

深圳市医疗卫生三名工程 SZSM201412020

深圳市高水平医学学科建设专项基金 2016031638

深圳市科技计划 JCJY20160229204849975

深圳市科技计划 GJHZ20170314171357556

深圳市卫生计生系统科研项目 SZXJ2017021

详细信息
    作者简介:

    林善,男,1989年生,博士,助理研究员,研究方向为异种胰岛移植,Email:biotechlin@foxmail.com

    蔡志明,主任医师、教授、博士研究生导师。现任深圳大学泌尿生殖研究所所长,国家泌尿生殖肿瘤中心副主任,国家地方联合肿瘤工程实验室主任,广东省泌尿生殖肿瘤重点实验室主任,国家“973”计划首席科学家,教育部“长江学者计划”、中共中央组织部“千人计划”等高层次人才评审专家,享受国务院特殊津贴。作为负责人先后承担国家“973”计划、“863”计划、国家自然科学基金、博士点基金等研究项目15项;发表SCI论文170多篇,总影响因子超过1 100分,他引频次超过6 500次,在《Nature》、《Nature Genetics》、《Nature Biotechnology》和《Cell》等国际著名刊物发表论文7篇;出版著作4部,获得国家、省、市奖项9项;培养硕士、博士(后)100多名。获全国先进工作者、全国优秀院长、深圳市科技奖市长奖等荣誉称号

    通讯作者:

    蔡志明,男,1956年生,博士,主任医师,研究方向为异种胰岛移植,Email:caizhiming2000@163.com

    牟丽莎,女,1983年生,博士,副研究员,研究方向为异种胰岛移植,Email:molly__molly@163.com

  • 中图分类号: R617, R392.4

  • 摘要: 细胞、组织及器官移植是治疗器官功能衰竭、癌症等重大疾病直接有效的治疗策略。免疫排斥是同种及异种移植研究领域中难以彻底攻克的难题,因此对移植受体免疫排斥反应的实时监测尤为重要,针对同种及异种移植开发具有特异度高、早期灵敏度高、非侵入、快速等优点的生物标志物及其监测方法非常迫切。微小核糖核酸(miRNA)在免疫细胞的生成、发育以及免疫性功能中发挥重要的作用。本文对常规免疫排斥监测方法的局限性、miRNA的生物学特性以及miRNA在同种和异种移植免疫排斥中的应用进行总结,以探讨miRNA在同种和异种移植免疫排斥监测中的应用前景。

     

  • [1] EKSER B, COOPER DKC, TECTOR AJ. The need for xenotransplantation as a source of organs and cells for clinical transplantation[J]. Int J Surg, 2015, 23(Pt B): 199-204. DOI: 10.1016/j.ijsu.2015.06.066.
    [2] EKSER B, MARKMANN JF, TECTOR AJ. Current status of pig liver xenotransplantation[J]. Int J Surg, 2015, 23(Pt B):240-246. DOI: 10.1016/j.ijsu.2015.06.083.
    [3] R E A R D O N S. N e w l i f e f o r p i g - t o - h u m a n transplants[J]. Nature, 2015, 527(7577): 152-154. DOI: 10.1038/527152a.
    [4] YANG L, GÜELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264): 1101-1104. DOI: 10.1126/science.aad1191.
    [5] NIU D, WEI HJ, LIN L, et al. Inactivation of porcineendogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. DOI: 10.1126/science.aan4187.
    [6] MOHIUDDIN MM, SINGH AK, CORCORAN PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7:11138. DOI: 10.1038/ncomms11138.
    [7] I WA S E H, H A R A H, E Z Z E L A R A B M, e t a l. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts[J]. Xenotransplantation, 2017, 24(2). DOI: 10.1111/xen.12293.
    [8] DUFRANE D, GOEBBELS RM, GIANELLO P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression[J]. Transplantation, 2010, 90(10): 1054-1062. DOI: 10.1097/TP.0b013e3181f6e267.
    [9] RACUSEN LC, SOLEZ K, COLVIN RB, et al. The Banff 97 working classification of renal allograft pathology[J]. Kidney Int, 1999, 55(2):713-723. doi: 10.1046/j.1523-1755.1999.00299.x
    [10] SARWAL M, CHUA MS, KAMBHAM N, et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling[J]. N Engl J Med, 2003, 349(2):125-138. doi: 10.1056/NEJMoa035588
    [11] GOLDSTEIN BN, WESLER J, NOWACKI AS, et al. Investigations of blood ammonia analysis: test matrices, storage, and stability[J]. Clin Biochem, 2017, 50(9): 537-539. DOI: 10.1016/j.clinbiochem.2017.01.002.
    [12] CALAROTA SA, CHIESA A, DE SILVESTRI A, et al. T-lymphocyte subsets in lung transplant recipients: association between nadir CD4 T-cell count and viral infections after transplantation[J]. J Clin Virol, 2015, 69:110-116. DOI: 10.1016/j.jcv.2015.06.078.
    [13] SCHWARZENBACH H, NISHIDA N, CALIN GA, et al. Clinical relevance of circulating cell-free microRNAs in cancer[J]. Nat Rev Clin Oncol, 2014, 11(3):145-156. DOI: 10.1038/nrclinonc.2014.5.
    [14] CHEN X, BA Y, MA L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18(10):997-1006. DOI: 10.1038/cr.2008.282.
    [15] VOLINIA S, CALIN GA, LIU CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci U S A, 2006, 103(7):2257-2261. doi: 10.1073/pnas.0510565103
    [16] HUNTER MP, ISMAIL N, ZHANG X, et al. Detection of microRNA expression in human peripheral blood microvesicles[J]. PLoS One, 2008, 3(11): e3694. DOI: 10.1371/journal.pone.0003694.
    [17] LAWRIE CH, GAL S, DUNLOP HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma[J]. Br J Haematol, 2008, 141(5):672-675. DOI: 10.1111/j.1365-2141.2008.07077.x.
    [18] HEEGAARD NH, SCHETTER AJ, WELSH JA, et al. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer[J]. Int J Cancer, 2012, 130(6): 1378-1386. DOI: 10.1002/ijc.26153.
    [19] LO YM, CHIU RW. Plasma nucleic acid analysis by massively parallel sequencing: pathological insights and diagnostic implications[J]. J Pathol, 2011, 225(3): 318- 323. DOI: 10.1002/path.2960.
    [20] MITCHELL PS, PARKIN RK, KROH EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518. DOI: 10.1073/pnas.0804549105.
    [21] TURCHINOVICH A, WEIZ L, LANGHEINZ A, et al. Characterization of extracellular circulating microRNA[J]. Nucleic Acids Res, 2011, 39(16): 7223- 7233. DOI: 10.1093/nar/gkr254.
    [22] TIAN Z, GREENE AS, PIETRUSZ JL, et al. MicroRNAtarget pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis[J]. Genome Res, 2008, 18(3): 404-411. DOI: 10.1101/gr.6587008.
    [23] MURAKAMI Y, TAMORI A, ITAMI S, et al. The expression level of miR-18b in hepatocellular carcinoma is associated with the grade of malignancy and prognosis[J]. BMC Cancer, 2013, 13:99. DOI: 10.1186/1471-2407-13-99.
    [24] 钟克波, 杨定华, 李湘竑, 等. MicroRNA在大鼠肝移植急性排斥反应中的表达[J].中华肝胆外科杂志, 2013, 19(10): 771-776. DOI: 10.3760/cma.j.issn.1007-8118.2013.10.014.

    ZHONG KB, YANG DH, LI XH, et al. MicroRNA expression in the acute rejection of liver transplantation in rats[J]. Chin J Hepatol Surg, 2013, 19(10): 771-776. DOI: 10.3760/cma.j.issn.1007-8118.2013.10.014.
    [25] 钟克波, 张鹏, 何晓顺, 等.肝移植术后稳定生存者外周血中差异表达miRNA及其功能预测[J].南方医科大学学报, 2015, 35(11): 1557-1563. DOI: 10.3969/j.issn.1673-4254.2015.11.08.

    ZHONG KB, ZHANG P, HE XS, et al. Differential expressions of microRNAs and their predicted targetsin liver transplant recipients with long-term stable survival[J]. J South Med Univ, 2015, 35(11): 1557-1563. DOI: 10.3969/j.issn.1673-4254.2015.11.08.
    [26] 黄金球. MiRNAs在大鼠肾移植急性排斥反应中的早期诊断作用[D]. 南方医科大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-90023-1014100036.htm
    [27] 段斌, 高妍婷, 罗永康, 等.肾移植术后急性排斥反应期外周血中miRNA表达[J].贵阳医学院学报, 2012, 37(6): 632-634. DOI: 10.3969/j.issn.1000-2707. 2012.06.014.

    DUAN B, GAO YT, LUO YK, et al. MicroRNA expression in peripheral blood of patients with acute rejection[J]. J Guiyang Med Univ, 2012, 37(6): 632-634. DOI: 10.3969/j.issn.1000-2707.2012.06.014.
    [28] LIU X, DONG C, JIANG Z, et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11[J]. Exp Cell Res, 2015, 333(1): 155-163. DOI: 10.1016/j.yexcr.2015.01.018.
    [29] DANGER R, PAUL C, GIRAL M, et al. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection[J]. PLoS One, 2013, 8(4): e60702. DOI: 10.1371/journal.pone.0060702.
    [30] GHARIB SA, EDELMAN JD, GE L, et al. Acute cellular rejection elicits distinct microRNA signatures in airway epithelium of lung transplant patients[J]. Transplant Direct, 2015, 1(10): e44. doi: 10.1097/TXD.0000000000000551
    [31] XU Z, SHARMA M, GELMAN A, et al. Significant role for microRNA-21 affecting toll-like receptor pathway in primary graft dysfunction after human lung transplantation[J]. J Heart Lung Transplant, 2017, 36(3): 331-339. DOI: 10.1016/j.healun.2016.08.028.
    [32] JIANG L, LIN C, SONG L, et al. MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/ IκBα negative feedback loop[J]. J Clin Invest, 2012, 122(1):33-47. DOI: 10.1172/JCI58849.
    [33] LI C, LIU T, QI F, et al. Analysis of intragraft microRNA expression in a mouse-to-rat cardiac xenotransplantation model[J]. Microsurgery, 2014, 34(1): 44-50. DOI: 10.1002/micr.22139.
    [34] ZHAO Z, QI F, LIU T, et al. Effect of miR-146a and miR- 155 on cardiac xenotransplantation[J]. Exp Ther Med, 2016, 12(6): 3972-3978. DOI: 10.3892/etm.2016.3867.
    [35] NASSIRPOUR R, RAJ D, TOWNSEND R, et al. MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond[J]. Food Chem Toxicol, 2016, 98(Pt A): 73-88. DOI: 10.1016/j.fct.2016.02.018.
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  46
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-22
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回