留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肾移植基础研究2017年盘点

朱彦融 苗芸

朱彦融, 苗芸. 肾移植基础研究2017年盘点[J]. 器官移植, 2018, 9(1): 33-40. doi: 10.3969/j.issn.1674-7445.2018.01.005
引用本文: 朱彦融, 苗芸. 肾移植基础研究2017年盘点[J]. 器官移植, 2018, 9(1): 33-40. doi: 10.3969/j.issn.1674-7445.2018.01.005
Zhu Yanrong, Miao Yun. Summary of basic study on renal transplantation in 2017[J]. ORGAN TRANSPLANTATION, 2018, 9(1): 33-40. doi: 10.3969/j.issn.1674-7445.2018.01.005
Citation: Zhu Yanrong, Miao Yun. Summary of basic study on renal transplantation in 2017[J]. ORGAN TRANSPLANTATION, 2018, 9(1): 33-40. doi: 10.3969/j.issn.1674-7445.2018.01.005

肾移植基础研究2017年盘点

doi: 10.3969/j.issn.1674-7445.2018.01.005
基金项目: 

国家自然科学基金 81500573

广东省高等教育学会高等教育科学研究“十三五”规划重点调研课题 16GZD009

南方医科大学南方医院院级教育课题 14NJ-ZL01

南方医科大学大学生创新创业训练项目基金 201612121006

南方医科大学大学生创新创业训练项目基金 201712121307

详细信息
    作者简介:

    朱彦融,研究方向为囊性肾病的免疫微环境,Email: michelle0012@vip.qq.com

    苗芸,副主任医师,现任南方医科大学南方医院器官移植科副主任。兼任中国医师学会肾脏移植分会青年委员兼副秘书长,中华医学会器官移植学分会委员、青年委员,中国医师学会器官移植分会感染学组、病理学组委员,中国研究型医院学会器官移植学专业委员会委员,中国生物医学工程学会透析移植分会委员,中国医疗保健国际交流促进会肾脏移植分会委员,广东省医学会器官移植分会委员兼秘书。兼任《器官移植》杂志编委。2002年毕业于第一军医大学临床医学系七年制。2007年于第一军医大学获得泌尿外科学博士学位,主要从事器官移植临床工作。2006年至2009年在美国俄亥俄州辛辛那提大学器官移植中心完成博士后工作。主持国家自然科学基金、广东省自然科学基金等10项。2009年和2013年分别获广东省科学技术奖二等奖。参编专著《器官移植学(第2版)》,发表论文40多篇,SCI论文3篇,单篇最高被引用68次

    通讯作者:

    苗芸,Email: miaoyunecho@126.com

  • 中图分类号: R617, R69

Summary of basic study on renal transplantation in 2017

  • 摘要: 根据肾移植领域国际核心期刊的文献,综述2017年该领域基础研究的前沿热点和最新进展,包括排斥反应、免疫耐受、缺血-再灌注损伤、机械灌注、异种移植等方面,协助临床医师深入了解移植肾相关疾病的现象与本质,提高对移植肾相关疾病的认识,以改善移植肾受体长期存活。

     

  • [1] RAMESSUR CHANDRAN S, HAN Y, TESCH GH, et al. Inhibition of spleen tyrosine kinase reduces renal allograft injury in a rat model of acute antibody-mediated rejection in sensitized recipients[J]. Transplantation, 2017, 101(8): e240-e248. DOI: 10.1097/TP.0000000000001826.
    [2] WANG L, SONG J, WANG S, et al. Cross-sex transplantation alters gene expression and enhances inflammatory response in the transplanted kidneys[J]. Am J Physiol Renal Physiol, 2017, 313(2): F326-F338. DOI: 10.1152/ajprenal.00039.2017.
    [3] VILLE S, POIRIER N, BRANCHEREAU J, et al. Anti-CD28 antibody and belatacept exert differential effects on mechanisms of renal allograft rejection[J]. J Am Soc Nephrol, 2016, 27(12): 3577-3588. DOI: 10.1681/ASN.2015070774.
    [4] OSHIMA S, KARRER EE, KAWATO Y, et al. The effect of ASP2409, a novel CD86-selective variant of CTLA4-Ig, on renal allograft rejection in nonhuman primates[J]. Transplantation, 2016, 100(12): 2611-2620. DOI: 10.1097/TP.0000000000001397.
    [5] JIN J, GONG J, LIN B, et al. FcγRⅡb expression on B cells is associated with treatment efficacy for acute rejection after kidney transplantation[J]. Mol Immunol, 2017, 85: 283-292. DOI: 10.1016/j.molimm.2017.03.006.
    [6] TOMASONI S, TRIONFINI P, AZZOLLINI N, et al. AAV9-mediated engineering of autotransplanted kidney of non-human primates[J]. Gene Ther, 2017, 24(5): 308-313. DOI: 10.1038/gt.2017.21.
    [7] LIU T, ZHANG Y, SHEN Z, et al. Immunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation[J]. Int J Mol Med, 2017, 39(1): 144-152. DOI: 10.3892/ijmm.2016.2808.
    [8] LI M, DAI Y, LEI J, et al. Acute rejection after kidney transplantation promotes graft fibrosis with elevated adenosine level in rat[J]. PLoS One, 2017, 12(6): e0180211. DOI: 10.1371/journal.pone.0180211.
    [9] WANG YY, JIANG H, PAN J, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury[J]. J Am Soc Nephrol, 2017, 28(7): 2053-2067. DOI: 10.1681/ASN.2016050573.
    [10] PALIN NK, SAVIKKO J, PASTERNACK A, et al. Activin inhibition limits early innate immune response in rat kidney allografts-a pilot study[J]. Transpl Int, 2017, 30(1): 96-107. DOI: 10.1111/tri.12876.
    [11] VALLABHAJOSYULA P, KORUTLA L, HABERTHEUER A, et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue[J]. J Clin Invest, 2017, 127(4): 1375-1391. DOI: 10.1172/JCI87993.
    [12] DURAN-STRUUCK R, SONDERMEIJER HP, BÜHLER L, et al. Effect of ex vivo-expanded recipient regulatory T cells on hematopoietic chimerism and kidney allograft tolerance across MHC barriers in cynomolgus macaques[J]. Transplantation, 2017, 101(2): 274-283. DOI: 10.1097/TP.0000000000001559.
    [13] PURROY C, FAIRCHILD RL, TANAKA T, et al. Erythropoietin receptor-mediated molecular crosstalk promotes T cell immunoregulation and transplant survival[J]. J Am Soc Nephrol, 2017, 28(8): 2377-2392. DOI: 10.1681/ASN.2016101100.
    [14] LITJENS NH, BOER K, ZUIJDERWIJK JM, et al. Natural regulatory T cells from patients with end-stage renal disease can be used for large-scale generation of highly suppressive alloantigen-specific tregs[J]. Kidney Int, 2017, 91(5): 1203-1213. DOI: 10.1016/j.kint.2016.09.043.
    [15] MAÏGA S, ALLAIN G, HAUET T, et al. Renal auto-transplantation promotes cortical microvascular network remodeling in a preclinical porcine model[J]. PLoS One, 2017, 12(7): e0181067. DOI: 10.1371/journal.pone.0181067.
    [16] AMDISEN C, JESPERSEN B, MØLDRUP U, et al. The unsuitability of implantable doppler probes for the early detection of renal vascular complications -a porcine model for prevention of renal transplant loss[J]. PLoS One, 2017, 12(5): e0178301. DOI: 10.1371/journal.pone.0178301.
    [17] ZHAO Y, DING C, XUE W, et al. Genome-wide DNA methylation analysis in renal ischemia reperfusion injury[J]. Gene, 2017, 610: 32-43. DOI: 10.1016/j.gene.2017.02.005.
    [18] TILLET S, GIRAUD S, KERFORNE T, et al. Inhibition of coagulation proteases Ⅹ a and Ⅱ a decreases ischemia-reperfusion injuries in a preclinical renal transplantation model[J]. Transl Res, 2016, 178:95-106. DOI: 10.1016/j.trsl.2016.07.014.
    [19] WU H, HUANG T, YING L, et al. MiR-155 is involved in renal ischemia-reperfusion injury via direct targeting of Foxo3a and regulating renal tubular cell pyroptosis[J]. Cell Physiol Biochem, 2016, 40(6): 1692-1705. DOI: 10.1159/000453218.
    [20] MELIS N, RUBERA I, COUGNON M, et al. Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome[J]. J Am Soc Nephrol, 2017, 28(3): 811-822. DOI: 10.1681/ASN.2016010012.
    [21] BAO DS, WU YK, FU SJ, et al. Hyperbaric oxygenation protects against ischemia-reperfusion injury in transplanted rat kidneys by triggering autophagy and inhibiting inflammatory response[J]. Ann Transplant, 2017, 22: 75-82. doi: 10.12659/AOT.901102
    [22] SNELGROVE SL, LO C, HALL P, et al. Activated renal dendritic cells cross present intrarenal antigens after ischemia-reperfusion injury[J]. Transplantation, 2017, 101(5): 1013-1024. DOI: 10.1097/TP.0000000000001427.
    [23] JIA Y, WANG L, ZHAO GY, et al. Carbon monoxide inhibits the nuclear-cytoplasmic translocation of HMGB1 in an in vitro oxidative stress injury model of mouse renal tubular epithelial cells[J]. J Huazhong Univ Sci Technolog Med Sci, 2016, 36(6): 791-795. DOI: 10.1007/s11596-016-1663-y.
    [24] BOELS MG, VAN FAASSEN EE, AVRAMUT MC, et al. Direct observation of enhanced nitric oxide in a murine model of diabetic nephropathy[J]. PLoS One, 2017, 12(1): e0170065. DOI: 10.1371/journal.pone.0170065.
    [25] NIELSEN PM, LAUSTSEN C, BERTELSEN LB, et al. In situ lactate dehydrogenase activity: a novel renal cortical imaging biomarker of tubular injury?[J]. Am J Physiol Renal Physiol, 2017, 312(3): F465-F473. DOI: 10.1152/ajprenal.00561.2015.
    [26] DECUYPERE JP, CEULEMANS LJ, WYLIN T, et al. Plasmatic villin 1 is a novel in vivo marker of proximal tubular cell injury during renal ischemia-reperfusion[J]. Transplantation, 2017, 101(11): e330-e336. DOI: 10.1097/TP.0000000000001876.
    [27] EL-SISI AE, SOKAR SS, ABU-RISHA SE, et al. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats[J]. Biomed Pharmacother, 2016, 84: 861-869. DOI: 10.1016/j.biopha.2016.10.009.
    [28] LIU Z, ZHONG Z, LAN J, et al. Mechanisms of hypothermic machine perfusion to decrease donation after cardiac death graft inflammation: through the pathway of upregulating expression of KLF2 and inhibiting TGF-β signaling[J]. Artif Organs, 2017, 41(1): 82-88. DOI: 10.1111/aor.12701.
    [29] HAMAOUI K, GOWERS S, BOUTELLE M, et al. Organ pretreatment with cytotopic endothelial localizing peptides to ameliorate microvascular thrombosis and perfusion deficits in ex vivo renal hemoreperfusion models[J]. Transplantation, 2016, 100(12): e128-e139. DOI: 10.1097/TP.0000000000001437.
    [30] MINOR T, SUTSCHET K, WITZKE O, et al. Prediction of renal function upon reperfusion by ex situ controlled oxygenated rewarming[J]. Eur J Clin Invest, 2016, 46(12): 1024-1030. DOI: 10.1111/eci.12687.
    [31] PARAJULI N, SHRUM S, TOBACYK J, et al. Renal cold storage followed by transplantation impairs expression of key mitochondrial fission and fusion proteins[J]. PLoS One, 2017, 12(10): e0185542. DOI: 10.1371/journal.pone.0185542.
    [32] KATHS JM, ECHEVERRI J, CHUN YM, et al. Continuous normothermic ex vivo kidney perfusion improves graft function in donation after circulatory death pig kidney transplantation[J]. Transplantation, 2017, 101(4): 754-763. DOI: 10.1097/TP.0000000000001343.
    [33] BLUM MF, LIU Q, SOLIMAN B, et al. Comparison of normothermic and hypothermic perfusion in porcine kidneys donated after cardiac death[J]. J Surg Res, 2017, 216: 35-45. DOI: 10.1016/j.jss.2017.04.008.
    [34] TOMALTY HE, HAMILTON EF, HAMILTON A, et al. Kidney preservation at subzero temperatures using a novel storage solution and insect ice-binding proteins[J]. Cryo Letters, 2017, 38(2): 100-107. https://www.researchgate.net/publication/310437774_Novel_method_for_renal_preservation_at_subzero_temperatures
    [35] SMITH SF, ADAMS T, HOSGOOD SA, et al. The administration of argon during ex vivo normothermic perfusion in an experimental model of kidney ischemia-reperfusion injury[J]. J Surg Res, 2017, 218: 202-208. DOI: 10.1016/j.jss.2017.05.041.
    [36] NIU D, WEI HJ, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. DOI: 10.1126/science.aan4187.
    [37] BUTLER JR, SANTOS RMN, MARTENS GR, et al. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination[J]. J Surg Res, 2017, 212:238-245. DOI: 10.1016/j.jss.2017.01.025.
    [38] MARTENS GR, REYES LM, BUTLER JR, et al. Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs[J]. Transplantation, 2017, 101(4): e86-e92. DOI: 10.1097/TP.0000000000001646.
    [39] LADOWSKI JM, REYES LM, MARTENS GR, et al. Swine leukocyte antigen (SLA) class Ⅱ is a xenoantigen[J]. Transplantation, 2017, DOI: 10.1097/TP.0000000000001924[Epub ahead of print].
    [40] LI T, LEE W, HARA H, et al. An investigation of extracellular histones in pig-to-baboon organ xenotransplantation[J]. Transplantation, 2017, 101(10): 2330-2339. DOI: 10.1097/TP.0000000000001676.
  • 加载中
计量
  • 文章访问数:  170
  • HTML全文浏览量:  66
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-14
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回