留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

猪肺异种移植的研究进展与发展方向

周明 邓阳阳 戴一凡 蔡志明 牟丽莎

周明, 邓阳阳, 戴一凡, 等. 猪肺异种移植的研究进展与发展方向[J]. 器官移植, 2017, 8(6): 476-479. doi: 10.3969/j.issn.1674-7445.2017.06.013
引用本文: 周明, 邓阳阳, 戴一凡, 等. 猪肺异种移植的研究进展与发展方向[J]. 器官移植, 2017, 8(6): 476-479. doi: 10.3969/j.issn.1674-7445.2017.06.013

猪肺异种移植的研究进展与发展方向

doi: 10.3969/j.issn.1674-7445.2017.06.013
基金项目: 

国家自然科学基金青年基金 81601760

深圳市科创委学科布局项目 JCYJ20160229204849975

深圳市科创委企业工程中心项目 GCZX2015043017281705

高水平医学学科建设专项基金 2016031638

深圳市科技研发资金基础研究—自由探索 JCYJ20160425104534335

详细信息
    通讯作者:

    牟丽莎, Email: molly__molly@163.com

  • 中图分类号: R617, R563

  • 摘要: 肺移植是治疗终末期肺疾病的唯一有效方法,但一直面临着严重的供体短缺问题。用猪肺替代人肺移植到人体内有望解决供体肺短缺的问题。但由于猪肺对多种损伤如组织灌注损伤、抗体依赖的补体损伤、适应性免疫反应以及凝血功能障碍造成的损伤等高度敏感,故而猪肺异种移植亦面临着许多难题亟待解决。本文介绍了目前异种肺移植的国内外研究现状,并归纳总结了异种肺移植的研究模型及其优缺点,着重论述了异种肺移植的损伤机制及可能的解决方案,并探讨了异种肺移植的未来发展方向。

     

  • 图  1  肺离体灌注简易模型

    空气流通管道连接到一个固定的气管上,血流从恒温37 ℃的容器经过蠕动泵流入肺动脉,血流从肺静脉流入储液器

    Figure  1.  Schematic presentation of the ex vivo lung perfusion model

  • [1] 王兴安, 姜格宁.我国肺移植的发展现状:问题与反思[J].中华外科杂志, 2016, 54(12): 881-885. DOI: 10.3760/cma.j.issn.0529-5815.2016.12.001.

    Wang XA, Jiang GN. Current status of lung transplantation in China:problems and perspectives[J]. Chin J Surg, 2016, 54(12): 881-885. DOI: 10.3760/cma.j.issn.0529-5815. 2016.12.001.
    [2] Cooper DK, Keogh AM, Brink J, et al. Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases[J]. J Heart Lung Transplant, 2000, 19(12): 1125-1165. DOI: http://dx.doi.org/ 10.1016/S1053-2498(00)00224-2.
    [3] Cantu E, Balsara KR, Li B, et al. Prolonged function of macrophage, von Willebrand factor-deficient porcine pulmonary xenografts[J]. Am J Transplant, 2007, 7(1): 66-75. DOI: 10.1111/j.1600-6143.2006.01603.x.
    [4] Burdorf L, Rybak E, Zhang TS, et al. Extended life-support duration in a xenogeneic lung transplantation model using pigs with multiple genetic modifications[J]. J Heart Lung Transpl, 2015, 34(4): S274. DOI: 10.1016/j.healun.2015.01.767.
    [5] Burdorf L, Azimzadeh AM, Pierson RN 3rd. Xenogeneic lung transplantation models[J]. Methods Mol Biol, 2012, 885: 169-189. DOI: 10.1007/978-1-61779-845-0_11.
    [6] Harris DG, Benipal PK, Cheng X, et al. Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: development and application to xenotransplantation[J]. PLoS One, 2015, 10(4): e0123015. DOI: 10.1371/journal.pone.0123015.
    [7] Pierson RN 3rd. Antibody-mediated xenograft injury: mechanisms and protective strategies[J]. Transpl Immunol, 2009, 21(2): 65-69. DOI: 10.1016/j.trim.2009.03.008.
    [8] Nguyen BN, Azimzadeh AM, Schroeder C, et al. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection[J]. Xenotransplantation, 2011, 18(2): 94-107. DOI: 10.1111/j.1399-3089.2011.00633.x.
    [9] Lutz AJ, Li P, Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1, 3-galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1): 27-35. DOI: 10.1111/xen.12019.
    [10] Harris DG, Quinn KJ, French BM, et al. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood[J]. Xenotransplantation, 2015, 22(2): 102-111. DOI: 10.1111/xen.12149.
    [11] Collins BJ, Blum MG, Parker RE, et al. Thromboxane mediates pulmonary hypertension and lung inflammation during hyperacute lung rejection[J]. J Appl Physiol (1985), 2001, 90(6): 2257-2268.
    [12] Cantu E, Gaca JG, Palestrant D, et al. Depletion of pulmonary intravascular macrophages prevents hyperacute pulmonary xenograft dysfunction[J]. Transplantation, 2006, 81(8): 1157-1164. DOI: 10.1097/01.tp.0000169758.57679.2a.
    [13] Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages[J]. Proc Natl Acad Sci U S A, 2007, 104(12): 5062-5066. DOI: 10.1073/pnas.0609661104.
    [14] Rieben R, Seebach JD. Xenograft rejection: IgG1, complement and NK cells team up to activate and destroy the endothelium[J]. Trends Immunol, 2005, 26(1): 2-5. DOI: 10.1016/j.it.2004.11.011.
    [15] 石斌, 殷惠军, 黄秀英, 等.HLA-G抑制NK和T细胞介导的对猪内皮细胞的细胞毒作用[J].科学通报, 2002, 47(21): 1644-1649. DOI: 10.3321/j.issn:0023-074X.2002.21.009.

    Shi B, Yin HJ, Huang XY, et al. HLA-G inhibits the cytotoxicity of NK and T cells to porcine endothelial cells[J]. Chin Sci Bull, 2002, 47(21): 1644-1649. DOI: 10.3321/j.issn:0023-074X.2002.21.009.
    [16] Gaca JG, Lesher A, Aksoy O, et al. The role of the porcine von Willebrand factor: baboon platelet interactions in pulmonary xenotransplantation[J]. Transplantation, 2002, 74(11): 1596-1603. DOI:10.1097/01.TP.0000038800. 37953.D9.
    [17] Kim YT, Lee HJ, Lee SW, et al. Pre-treatment of porcine pulmonary xenograft with desmopressin: a novel strategy to attenuate platelet activation and systemic intravascular coagulation in an ex-vivo model of swine-to-human pulmonary xenotransplantation[J]. Xenotransplantation, 2008, 15(1): 27-35. DOI: 10.1111/j.1399-3089.2008.00445.x.
    [18] Chen D, Riesbeck K, McVey JH, et al. Regulated inhibition of coagulation by porcine endothelial cells expressing P-selectin-tagged hirudin and tissue factor pathway inhibitor fusion proteins[J]. Transplantation, 1999, 68(6): 832-839. doi: 10.1097/00007890-199909270-00016
    [19] Cooper DK, Ekser B, Burlak C, et al. Clinical lung xenotransplantation--what donor genetic modifications may be necessary?[J]. Xenotransplantation, 2012, 19(3): 144-158. DOI: 10.1111/j.1399-3089.2012.00708.x.
    [20] Roussel JC, Moran CJ, Salvaris EJ, et al. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI[J]. Am J Transplant, 2008, 8(6): 1101-1112. DOI: 10.1111/j.1600-6143.2008.02210.x.
    [21] Phelps CJ, Ball SF, Vaught TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6): 477-485. DOI: 10.1111/j.1399-3089.2009.00533.x.
    [22] Crikis S, Lu B, Murray-Segal LM, et al. Transgenic overexpression of CD39 protects against renal ischemia-reperfusion and transplant vascular injury[J]. Am J Transplant, 2010, 10(12): 2586-2595. DOI: 10.1111/j.1600-6143.2010.03257.x.
    [23] Iwase H, Liu H, Wijkstrom M, et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date[J]. Xenotransplantation, 2015, 22(4): 302-309. DOI: 10.1111/xen.12174.
    [24] Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7: 11138. DOI: 10.1038/ncomms11138.
    [25] Chen J, Lansford R, Stewart V, et al. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development[J]. Proc Natl Acad Sci U S A, 1993, 90(10): 4528-4532. doi: 10.1073/pnas.90.10.4528
    [26] Matsunari H, Nagashima H, Watanabe M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs[J]. Proc Natl Acad Sci U S A, 2013, 110(12): 4557-4562. DOI: 10.1073/pnas.1222902110.
  • 加载中
图(1)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  128
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回