留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

猪胰岛异种移植的研究进展

刘征兆 何甜 蔡志明 牟丽莎

刘征兆, 何甜, 蔡志明, 等. 猪胰岛异种移植的研究进展[J]. 器官移植, 2017, 8(3): 246-250. doi: 10.3969/j.issn.1674-7445.2017.03.016
引用本文: 刘征兆, 何甜, 蔡志明, 等. 猪胰岛异种移植的研究进展[J]. 器官移植, 2017, 8(3): 246-250. doi: 10.3969/j.issn.1674-7445.2017.03.016

猪胰岛异种移植的研究进展

doi: 10.3969/j.issn.1674-7445.2017.03.016
基金项目: 

深圳市三名工程(驯化器官)项目 2015

深圳市科创委学科布局项目 JCYJ20160229204849975

驯化器官医学工程技术研究开发中心 GCZX2015043017281705

高水平医学学科建设专项基金 2016031638

详细信息
    通讯作者:

    蔡志明,Email:caizhiming2000@163.com

    牟丽莎,Email:molly__molly@163.com

  • 中图分类号: R617

  • 摘要: 糖尿病是严重威胁人类健康的疾病,而胰岛移植可以通过调节内源性胰岛素的分泌,治疗1型糖尿病。由于人源胰腺供体不足,无法满足大批量胰岛细胞移植需求。猪胰岛素与人胰岛素仅差1个氨基酸,在糖尿病患者身上使用已有较长历史,而且猪可以进行基因修饰,减少移植后免疫排斥反应,因此目前猪胰岛作为异种胰岛移植来源进入临床试验阶段。本文将就猪-非人灵长类移植的发展史,猪胰岛异种移植中存在的问题、解决方案和研究进展,及猪胰岛异种移植前景和展望做一综述。

     

  • 表  1  猪胰岛移植至非人灵长类动物体内的存活情况

    Table  1.   The survival of porcine islet transplantation to non-human primate animals

    研究作者 猪胰岛来源→受者 移植后最长存活时间 免疫抑制方案
    Hering, et al[5] 野生型成年→(C) >187 d 抗IL-2R抗体+抗CD154抗体+FTY720+西罗莫司
    Cardona, et al[6] 野生型新生→(R) >260 d 抗IL-2R抗体+抗CD154抗体+CTLA4-Ig+西罗莫司
    Thompson, et al[7] 野生型新生→(R) >203 d 抗IL-2R抗体+抗CD40抗体+CTLA4-Ig+西罗莫司
    Thompson, et al[8] 野生型新生→(R) 114 d 抗IL-2R抗体+抗LFA-1抗体+CTLA4-Ig+MMF+LFA-3-Ig
    Shin, et al[9] 野生型成年→(R) >603 d ATG+CVF+抗TNF抗体+抗CD154抗体+西罗莫司+Treg
    Sun, et al[10] 野生型成年→(C) 804 d 海藻酸盐胶囊化,腹腔注射
    Dufrane, et al[11] 野生型成年→(C) >180 d 海藻酸盐胶囊化,皮下注射
    Mandel, et al[12] hCD55-Tg胎猪→(C) >40 d 环孢素+类固醇+环磷酰胺或布喹那
    Komoda, et al[13] GnT-Ⅲ成年→(C) 5 d
    Van der Windt, et al[14] hCD46-Tg成年→(C) >396 d ATG+抗CD154抗体+MMF
    Thompson, et al[15] GTKO新生→(R) 249 d 抗CD154抗体+抗LFA-1抗体+ CTLA4-Ig+MMF
    Chen, et al[16] GTKO/hCD55/hCD59/hHT新生→(B) 28 d MMF+ATG+他克莫司
    Bottino, et al[17] Multi-Tg成年→(C) >365 d ATG+抗CD154抗体+MMF
    (C)为猕猴;(R)为恒河猴;(B)为狒狒;IL-2R为白细胞介素-2受体;FTY720为芬戈莫德;ATG为抗胸腺细胞球蛋白;MMF为吗替麦考酚酯;CVF为眼镜蛇蛇毒因子;TNF为肿瘤坏死因子;LFA为淋巴细胞功能相关抗原;CTLA4-Ig为细胞毒性T淋巴细胞相关抗原4免疫球蛋白;Treg为调节性T细胞
    下载: 导出CSV
  • [1] Katagi M, Terashima T, Okano J, et al. Hyperglycemia induces abnormal gene expression in hematopoietic stem cells and their progeny in diabetic neuropathy[J]. FEBS Lett, 2014, 588(6):1080-1086. DOI: 10.1016/j.febslet.2014.02.030.
    [2] Babizhayev MA, Lankin VZ, Savel'Yeva EL, et al. Diabetes mellitus: novel insights, analysis and interpretation of pathophysiology and complications management with imidazole-containing peptidomimetic antioxidants[J]. Recent Pat Drug Deliv Formul, 2013, 7(3):216-256. doi: 10.2174/1872211307666131117121058
    [3] 王维, 莫朝辉, 叶斌, 等.新生猪胰岛移植治疗糖尿病病人的临床研究[J].中南大学学报(医学版), 2011, 36(12):1134-1140. DOI: 10.3969/j.issn.1672-7347.2011.12.002.

    Wang W, Mo Z, Ye B, et al. A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients[J]. J Zhongnan Univ(Med Sci), 2011, 36(12):1134-1140. DOI: 10.3969/j.issn.1672-7347.2011.12.002.
    [4] Park CG, Bottino R, Hawthorne WJ. Current status of islet xenotransplantation[J]. Int J Surg, 2015, 23 (Pt B):261-266. DOI: 10.1016/j.ijsu.2015.07.703.
    [5] Hering BJ, Wijkstrom M, Graham ML, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates[J]. Nat Med, 2006, 12(3):301-303. doi: 10.1038/nm1369
    [6] Cardona K, Korbutt GS, Milas Z, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways[J]. Nat Med, 2006, 12(3):304-306. doi: 10.1038/nm1375
    [7] Thompson P, Cardona K, Russell M, et al.CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates[J]. Am J Transplant, 2011, 11(5):947-957. DOI: 10.1111/j.1600-6143.2011.03509.x.
    [8] Thompson P, Badell IR, Lowe M, et al. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival[J]. Am J Transplant, 2012, 12(7):1765-1775. DOI: 10.1111/j.1600-6143.2012.04031.x.
    [9] Shin JS, Kim JM, Kim JS, et al. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets[J]. Am J Transplant, 2015, 15(11):2837-2850. DOI: 10.1111/ajt.13345.
    [10] Sun Y, Ma X, Zhou D, et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression[J]. J Clin Invest, 1996, 98(6): 1417-1422. doi: 10.1172/JCI118929
    [11] Dufrane D, Goebbels RM, Saliez A, et al. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept[J]. Transplantation, 2006, 81(9):1345-1353. doi: 10.1097/01.tp.0000208610.75997.20
    [12] Mandel TE, Koulmanda M, Cozzi E, et al. Transplantation of normal and DAF-transgenic fetal pig pancreas into cynomolgus monkeys[J]. Transplant Proc, 1997, 29(1-2 /01):940. http://www.ncbi.nlm.nih.gov/pubmed/9123596
    [13] Komoda H, Miyagawa S, Omori T, et al. Survival of adult islet grafts from transgenic pigs with N-acetylglucosaminyltransferase-Ⅲ (GnT-Ⅲ) in cynomolgus monkeys[J]. Xenotransplantation, 2005, 2(3):209-216. http://europepmc.org/abstract/MED/15807771
    [14] van der Windt DJ, Bottino R, Casu A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets[J] Am J Transplant, 2009, 9(12):2716-2726. DOI: 10.1111/j.1600-6143.2009.02850.x.
    [15] Thompson P, Badell IR, Lowe M, et al. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function[J]. Am J Transplant, 2011, 11(12):2593-2602. DOI: 10.1111/j.1600-6143.2011.03720.x.
    [16] Chen Y, Stewart JM, Gunthart M, et al. Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors[J]. Xenotransplantation, 2014, 21(3): 244-253. DOI: 10.1111/xen.12091.
    [17] Bottino R, Wijkstrom M, van der Windt DJ, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs[J]. Am J Transplant, 2014, 14(10):2275-2287. DOI: 10.1111/ajt.12868.
    [18] Hawthorne WJ, Salvaris EJ, Phillips P, et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons[J]. Am J Transplant, 2014, 14(6):1300-1309. DOI: 10.1111/ajt.12722.
    [19] Yang Y, Wang K, Wu H, et al. Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering[J]. J Mol Cell Biol, 2016, 8(2):174-177. DOI: 10.1093/jmcb/mjw008.
    [20] Zhu HT, Yu L, Lyu Y, et al. Optimal pig donor selection in islet xenotransplantation: current status and future perspectives[J]. J Zhejiang Univ Sci B, 2014, 15(8):681-691. DOI: 10.1631/jzus.B1400120.
    [21] Nagaraju S, Bottino R, Wijkstrom M, et al. Islet xenotransplantation: what is the optimal age of the islet-source pig?[J]. Xenotransplantation, 2015, 22(1):7-19. DOI: 10.1111/xen.12130.
    [22] Wijkstrom M, Bottino R, Iwase H, et al. Glucose metabolism in pigs expressing human genes under an insulin promoter[J]. Xenotransplantation, 2015, 22(1):70-79. DOI: 10.1111/xen.12145.
    [23] Wynyard S, Nathu D, Garkavenko O, et al. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand[J]. Xenotransplantation, 2014, 21(4):309-323. DOI: 10.1111/xen.12102.
    [24] Yang L, Guell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264):1101-1104. DOI: 10.1126/science.aad1191.
    [25] Morozov VA, Wynyard S, Matsumoto S, et al. No PERV transmission during a clinical trial of pig islet cell transplantation[J]. Virus Res, 2017, 227:34-40. DOI: 10.1016/j.virusres.2016.08.012.
    [26] Cozzi E, Tönjes RR, Gianello P, et al. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes --Chapter 1: update on national regulatory frameworks pertinent to clinical islet xenotransplantation[J]. Xenotransplantation, 2016, 23(1):14-24. DOI: 10.1111/xen.12222.
    [27] Marchetti P. Islet inflammation in type 2 diabetes[J]. Diabetologia, 2016, 59(4):668-672. DOI: 10.1007/s00125-016-3875-x.
    [28] Morgan NG, Leete P, Foulis AK, et al. Islet inflammation in human type 1 diabetes mellitus[J]. IUBMB Life, 2014, 66(11):723-734. DOI: 10.1002/iub.1330.
    [29] Kang HJ, Lee H, Park EM, et al. Dissociation between anti-porcine albumin and anti-Gal antibody responses in non-human primate recipients of intraportal porcine islet transplantation[J]. Xenotransplantation, 2015, 22(2):124-134. DOI: 10.1111/xen.12152.
    [30] Lowe M, Badell IR, Thompson P, et al. A novel monoclonal antibody to CD40 prolongs islet allograft survival[J]. Am J Transplant, 2012, 12(8):2079-2087. DOI: 10.1111/j.1600-6143.2012.04054.x.
    [31] Mohiuddin MM, Singh AK, Corcoran PC, et al. One-year heterotopic cardiac xenograft survival in a pig to baboon model[J]. Am J Transplant, 2014, 14(2):488-489. DOI: 10.1111/ajt.12562.
    [32] Iwase H, Ekser B, Satyananda V, et al. Pig-to-baboon heterotopic heart transplantation--exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens[J]. Xenotransplantation, 2015, 22(3):211-220. DOI: 10.1111/xen.12167.
    [33] Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7:11138. DOI: 10.1038/ncomms11138.
    [34] Gianello P. Macroencapsulated pig islets correct induced diabetes in primates up to 6 months[J]. Adv Exp Med Biol, 2015, 865:157-170. DOI: 10.1007/978-3-319-18603-0_10.
    [35] Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution[J]. Adv Drug Deliv Rev, 2014, 67-68:35-73. DOI: 10.1016/j.addr.2013.07.018.
    [36] Cooper DK, Matsumoto S, Abalovich A, et al. Progress in clinical encapsulated islet xenotransplantation[J]. Transplantation, 2016, 100(11):2301-2308. DOI: 10.1097/TP.0000000000001371.
    [37] Li J, Ezzelarab MB, Ayares D, et al. The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation[J]. Stem Cell Rev, 2014, 10(1):79-85. DOI: 10.1007/s12015-013-9478-8.
    [38] Vériter S, Gianello P, Igarashi Y, et al. Improvement of subcutaneous bioartificial pancreas vascularization and function by coencapsulation of pig islets and mesenchymal stem cells in primates[J]. Cell Transplant, 2014, 23(11):1349-1364. DOI: 10.3727/096368913X663550.
    [39] Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2):288-299. DOI: 10.1002/path.4635.
    [40] Klymiuk N, van Buerck L, Bähr A, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice[J]. Diabetes, 2012, 61(6):1527-1532. DOI: 10.2337/db11-1325.
  • 加载中
表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  89
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-10
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2017-05-15

目录

    /

    返回文章
    返回