留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于器官移植的基因修饰猪的研究进展

张军方 徐佳 蔡志明 戴一凡 牟丽莎

张军方, 徐佳, 蔡志明, 等. 用于器官移植的基因修饰猪的研究进展[J]. 器官移植, 2017, 8(2): 165-170. doi: 10.3969/j.issn.1674-7445.2017.02.014
引用本文: 张军方, 徐佳, 蔡志明, 等. 用于器官移植的基因修饰猪的研究进展[J]. 器官移植, 2017, 8(2): 165-170. doi: 10.3969/j.issn.1674-7445.2017.02.014

用于器官移植的基因修饰猪的研究进展

doi: 10.3969/j.issn.1674-7445.2017.02.014
基金项目: 

国家自然科学基金项目青年基金 81502685

广东省自然科学基金项目 2016A030310179

深圳市高水平医学学科建设专项基金 2016031638

深圳市三名工程;深圳市科创委学科布局项目 JCYJ20160229204849975

深圳市科创委企业工程中心项目 GCZX2015043017281705

详细信息
    通讯作者:

    戴一凡, Email: daiyifan@njmu.edu.cn

    牟丽莎, Email: molly__molly@163.com

  • 中图分类号: R617, R-332, Q78

  • 摘要: 器官的严重短缺是开展移植手术面临的主要难题。经过基因修饰改造的低免疫源性猪有望成为合适的异种器官移植供体。人工核酸内切酶介导的基因组编辑技术,包括ZFNs、TALENs和CRISPR/Cas9技术,极大地促进了异种器官移植的发展,并且可用于高效定向的遗传改造。目前,基因修饰猪的研究正在朝临床应用的方向飞速发展。本文综述了利用基因组编辑技术培育的基因修饰猪的研究进展。

     

  • 表  1  传统基因编辑技术在转基因修饰猪中的应用

    Table  1.   Application of traditional gene editing technology in transgenic pigs

    研究作者 发表年份 靶基因 技术方案 基因编辑技术
    Fodor WL, et al[5] 1994 Human CD59 + H2kb-hCD59 DNA for embryo injection Random integration
    Cozzi E, et al[6] 1995 Human CD55 + 6.5 kilobase DNA construct with the 4 kb hDAF Random integration
    Osman N, et al[7] 1997 Human GLA + pH2kb-hHT Random integration
    Costa C, et al[8] 1999 Human H-transferase + H2Kb-HT construct Random integration
    Miyagawa S, et al[9] 2001 Human CD46+ 60 kb genomic construct with CD46 Random integration
    Miyagawa S, et al[9] 2001 Human GnT-+ pCX vector-GnT-Ⅲ Random integration
    Lai L, et al[10] 2002 GGTA1 -/+ Random integration
    Phelps CJ, et al[11] 2003 GGTA1 -/- back cross Random integration
    Klose R, et al[12] 2005 Human TRAIL + TRAIL in pUCH2XXS-TRAIL Random integration
    Wu G, et al[13] 2007 Human DAF and MCP + Random integration
    Phelps CJ, et al[14] 2009 Porcine CTLA4-Ig + pCTLA4-Ig with CHS and CH3 linker of IgG1 Random integration
    Petersen B, et al[15] 2009 Human thrombomodulin + hTM in pEGFP-N1 Random integration
    Weiss EH, et al[16] 2009 HLA-E/Human Beta-2-microglobulin + HLA-B7 in pCR2.1-TOPO Random integration
    Oropeza M, et al[17] 2009 Human A20 + pCAGGSEhA20-IRESNEO Random integration
    Yazaki S, et al[18] 2009 Endo-B-Galactosidase t and Human CD55 + pCAG-hDAF-p (A) and pCAGGS/GT t EdnoGalC-neo Random integration
    Hara H, et al[19] 2010 CTA-DN + Random integration
    Shudo K, et al[20] 2010 Human Fas Ligand + pcDNA/FasL Random integration
    Cho B, et al[21] 2011 Human TNFRI-Fc + shTNFRI-Fc Random integration
    Yeom HJ, et al[22] 2012 Human heme oxygenase 1 + SV40-hHO-I Random integration
    Wheeler DG, et al[23] 2012 Human CD39 + H2Kb-hCD39 Random integration
    Klymiuk N, et al[24] 2012 LEA29Y + LEA29Y in B-cell specific expression vector Random integration
    下载: 导出CSV

    表  2  人工核酸酶技术在转基因修饰猪中的应用

    Table  2.   Application of artificial nucleic acid enzyme in transgenic modified pig

    研究作者 发表年份 靶基因 基因编辑技术
    Lutz AJ, et al[28] 2013 GGTA1-/- CMAH -/- ZFN
    Li P, et al[35] 2014 GGTA1-/- CMAH -/- iGb3S -/- CRISPR/Cas9
    Li P, et al [35] 2014 GGTA1-/- CMAH -/- CRISPR/Cas9
    Li P, et al [35] 2014 GGTA1-/- CRISPR/Cas9
    Li P, et al[35] 2014 GGTA1-/- iGb3S-/- CRISPR/Cas9
    Reyes LM, et al[36] 2014 GGTA1-/- SLA-1, -2, -3-/- CRISPR/Cas9
    Reyes LM, et al[36] 2015 ASGR-/- TALEN
    Estrada JL, et al[37] 2015 GGTA1-/- CMAH-/- B4GalNT2-/- CRISPR/Cas9
    下载: 导出CSV

    表  3  目前用于异种移植的基因修饰猪的遗传改造情况

    Table  3.   Current situation of genetically modified pigs for xenotransplantation

    转基因猪改进策略 修饰的基因及方法
    Gal or non-Gal antigen ‘masking’ or deletion Human H-transferase gene expression (expression of blood type O antigen)
    Endo-β-galactosidase C (reduction of Gal antigen expression)
    α1, 3-galactosyltransferase gene knockout (GTKO)
    Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene knockout (CMAHKO)
    β1, 4-N-acetylgalactosaminyltransferase (β4GalNT2) gene knockout (β4GalNT2KO)
    CD46 (membrane co-factor protein)
    Complement regulation by human complement-regulatory gene expression CD55 (decay-accelerating factor)
    CD59 (protectin or membrane inhibitor of reactive lysis)
    von Willebrand factor (vWF)-deficient (natural mutant)
    Anticoagulation and anti-inflammatory gene expression or deletion Human tissue factor pathway inhibitor (TFPI)
    Human thrombomodulin
    Human endothelial protein C receptor (EPCR)
    Human ectonucleoside triphosphate diphosphohydrolase-1 (CD39)
    CIITA-DN (MHC class Ⅱ transactivator knockdown, resulting in swine leukocyte antigen class Ⅱ knockdown)
    Suppression of cellular immune response by gene expression or downregulation Class Ⅰ MHC-knockout (MHC-IKO)
    HLA-E/human β2-microglobulin (inhibits human natural killer cell cytotoxicity)
    Human FAS ligand (CD95L)
    Human N-acetylglucosaminyltransferase Ⅲ (GnT-Ⅲ) gene
    Porcine CTLA4-Ig (cytotoxic T lymphocyte antigen 4 or CD152)
    Human TRAIL (tumour necrosis factor-α-related apoptosis-inducing ligand)
    Human tumour necrosis factor-α-induced protein 3 (A20)
    Anticoagulation, anti-inflammatory and anti-apoptotic gene expression Human haem oxygenase-1 (HO-1)
    Human CD47 (species-specific interaction with SIRP-α inhibits phagocytosis)
    Porcine asialoglycoprotein receptor 1 gene-knockout (ASGR1-KO; decreases platelet phagocytosis)
    Human signal regulatory protein-α (SIRPα; decreases platelet phagocytosis by ‘self’ recognition)
    PERV siRNA
    Prevention of porcine endogenous retrovirus (PERV) activation Genome-wide inactivation
    下载: 导出CSV
  • [1] Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2):288-299. DOI: 10.1002/path.4635.
    [2] Vadori M, Cozzi E. The immunological barriers to xenotransplantation[J]. Tissue Antigens, 2015, 86(4):239-253. DOI: 10.1111/tan.12669.
    [3] Raben N, Nagaraju K, Lee E, et al. Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type Ⅱ[J]. J Biol Chem, 1998, 273(30):19086-19092. doi: 10.1074/jbc.273.30.19086
    [4] Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet, 2005, 6(6):507-512. doi: 10.1038/nrg1619
    [5] Fodor WL, Williams BL, Matis LA, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection[J]. Proc Natl Acad Sci U S A, 1994, 91(23):11153-11157. doi: 10.1073/pnas.91.23.11153
    [6] Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans[J]. Nat Med, 1995, 1(9):964-966. doi: 10.1038/nm0995-964
    [7] Osman N, McKenzie IF, Ostenried K, et al. Combined transgenic expression of alpha-galactosidase and alpha1, 2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galalpha (1, 3) Gal[J]. Proc Natl Acad Sci U S A, 1997, 94(26):14677-14682. doi: 10.1073/pnas.94.26.14677
    [8] Costa C, Zhao L, Burton WV, et al. Expression of the human alpha1, 2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis[J]. FASEB J, 1999, 13(13):1762-1773. https://www.ncbi.nlm.nih.gov/pubmed/%20%20%20%20%20%2010506579
    [9] Miyagawa S, Murakami H, Takahagi Y, et al. Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase Ⅲ in transgenic pig[J]. J Biol Chem, 2001, 276(42):39310-39319. doi: 10.1074/jbc.M104359200
    [10] Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557):1089-1092. doi: 10.1126/science.1068228
    [11] Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1, 3-galactosyltransferase-deficient pigs[J]. Science, 2003, 299(5605):411-414. doi: 10.1126/science.1078942
    [12] Klose R, Kemter E, Bedke T, et al. Expression of biologically active human TRAIL in transgenic pigs[J]. Transplantation, 2005, 80(2):222-230. doi: 10.1097/01.TP.0000164817.59006.C2
    [13] Wu G, Pfeiffer S, Schröder C, et al. Coagulation cascade activation triggers early failure of pig hearts expressing human complement regulatory genes[J]. Xenotransplantation, 2007, 14(1):34-47. doi: 10.1111/xen.2007.14.issue-1
    [14] Phelps CJ, Ball SF, Vaught TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6):477-485. DOI: 10.1111/j.1399-3089.2009.00533.x.
    [15] Petersen B, Ramackers W, Tiede A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2009, 16(6):486-495. DOI: 10.1111/j.1399-3089.2009.00537.x.
    [16] Weiss EH, Lilienfeld BG, Müller S, et al. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity[J]. Transplantation, 2009, 87(1):35-43. DOI: 10.1097/TP.0b013e318191c784.
    [17] Oropeza M, Petersen B, Carnwath JW, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli[J]. Xenotransplantation, 2009, 16(6):522-534. DOI: 10.1111/j.1399-3089.2009.00556.x.
    [18] Yazaki S, Iwamoto M, Onishi A, et al. Successful cross-breeding of cloned pigs expressing endo-beta-galactosidase C and human decay accelerating factor[J]. Xenotransplantation, 2009, 16(6):511-521. DOI: 10.1111/j.1399-3089.2009.00549.x.
    [19] Hara H, Koike N, Long C, et al. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs[J]. Invest Ophthalmol Vis Sci, 2011, 52(8):5278-5286. DOI: 10.1167/iovs.10-6947.
    [20] Shudo K, Kinoshita K, Imamura R, et al. The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity[J]. Eur J Immunol, 2001, 31(8):2504-2511. doi: 10.1002/(ISSN)1521-4141
    [21] Cho B, Koo OJ, Hwang JI, et al. Generation of soluble human tumor necrosis factor-α receptor 1-Fc transgenic pig[J]. Transplantation, 2011, 92(2):139-147. DOI: 10.1097/TP.0b013e3182215e7e.
    [22] Yeom HJ, Koo OJ, Yang J, et al. Generation and characterization of human heme oxygenase-1 transgenic pigs[J]. PLoS One, 2012, 7(10):e46646. DOI: 10.1371/journal.pone.0046646.
    [23] Wheeler DG, Joseph ME, Mahamud SD, et al. Transgenic swine: expression of human CD39 protects against myocardial injury[J]. J Mol Cell Cardiol, 2012, 52(5):958-961. DOI: 10.1016/j.yjmcc.2012.01.002. Epub 2012 Jan 12.
    [24] Klymiuk N, van Buerck L, Bähr A, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immunerejection in humanized mice[J]. Diabetes, 2012, 61(6):1527-1532. DOI: 10.2337/db11-1325.
    [25] Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31(7):397-405. DOI: 10.1016/j.tibtech.2013.04.004.
    [26] Orlando SJ, Santiago Y, DeKelver RC, et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology[J]. Nucleic Acids Res, 2010, 38(15):e152. DOI: 10.1093/nar/gkq512.
    [27] Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2):757-761. DOI: 10.1534/genetics.110.120717.
    [28] Lutz AJ, Li P, Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1, 3-galactose reduce thehumoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1):27-35. DOI: 10.1111/xen.12019.
    [29] Carlson DF, Tan W, Lillico SG, et al. Efficient TALEN-mediated gene knockout in livestock[J]. Proc Natl Acad Sci U S A, 2012, 109(43):17382-17387. DOI: 10.1073/pnas.1211446109.
    [30] Xin J, Yang H, Fan N, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs[J]. PLoS One, 2013, 8(12):e84250. DOI: 10.1371/journal.pone.0084250.
    [31] Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385):331-338. DOI: 10.1038/nature10886.
    [32] Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology[J]. Nat Methods, 2013, 10(10):957-963. DOI: 10.1038/nmeth.2649.
    [33] Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity[J]. Nature, 2010, 463(7280):568-571. DOI: 10.1038/nature08703.
    [34] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. DOI: 10.1126/science.1225829.
    [35] Li P, Estrada JL, Burlak C, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection[J]. Xenotransplantation, 2015, 22(1):20-31. DOI: 10.1111/xen.12131.
    [36] Reyes LM, Estrada JL, Wang ZY, et al. Creating class Ⅰ MHC-null pigs using guide RNA and the Cas9 endonuclease[J]. J Immunol, 2014, 193(11):5751-5757. DOI: 10.4049/jimmunol.1402059.
    [37] Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2genes[J]. Xenotransplantation, 2015, 22(3):194-202. DOI: 10.1111/xen.12161.
    [38] Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040):307. DOI: 10.1126/science.1207773.
    [39] Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. DOI: 10.1038/nbt.2808.
    [40] Ramirez CL, Certo MT, Mussolino C, et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects[J]. Nucleic Acids Res, 2012, 40(12):5560-5568. DOI: 10.1093/nar/gks179.
    [41] Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res, 2013, 23(5):720-723. DOI: 10.1038/cr.2013.46.
    [42] Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res, 2013, 23(5):720-723. DOI: 10.1038/cr.2013.46
    [43] Zhang H, Zhang J, Wei P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnol J, 2014, 12(6):797-807. DOI: 10.1111/pbi.12200.
    [44] Veres A, Gosis BS, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing[J]. Cell Stem Cell, 2014, 15(1):27-30. DOI: 10.1016/j.stem.2014.04.020.
  • 加载中
表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  48
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2017-03-15

目录

    /

    返回文章
    返回